OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1113–1128

Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser

Haohua Tu, Yuan Liu, Xiaomin Liu, Dmitry Turchinovich, Jesper Lægsgaard, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1113-1128 (2012)
http://dx.doi.org/10.1364/OE.20.001113


View Full Text Article

Enhanced HTML    Acrobat PDF (1764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.

© 2012 OSA

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 7, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: December 17, 2011
Published: January 4, 2012

Citation
Haohua Tu, Yuan Liu, Xiaomin Liu, Dmitry Turchinovich, Jesper Lægsgaard, and Stephen A. Boppart, "Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser," Opt. Express 20, 1113-1128 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express13(19), 7535–7540 (2005). [CrossRef] [PubMed]
  2. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B24(8), 1786–1792 (2007). [CrossRef]
  3. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B27(3), 550–559 (2010). [CrossRef]
  4. H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010). [CrossRef] [PubMed]
  5. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express19(6), 4902–4907 (2011). [CrossRef] [PubMed]
  6. H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B (2011), doi:. [CrossRef]
  7. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19(8), 7742–7749 (2011). [CrossRef] [PubMed]
  8. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009). [CrossRef] [PubMed]
  9. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004). [CrossRef] [PubMed]
  10. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  11. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  13. F. Druon and P. Georges, “Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm,” Opt. Express12(15), 3383–3396 (2004). [CrossRef] [PubMed]
  14. B. von Vacano, T. Buckup, and M. Motzkus, “Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy,” J. Opt. Soc. Am. B24(5), 1091–1100 (2007). [CrossRef]
  15. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B22(3), 687–693 (2005). [CrossRef]
  16. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett.28(20), 1951–1953 (2003). [CrossRef] [PubMed]
  17. G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B78(5), 557–563 (2004). [CrossRef]
  18. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express19(4), 3775–3787 (2011). [CrossRef] [PubMed]
  19. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express19(13), 12275–12283 (2011). [CrossRef] [PubMed]
  20. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express14(4), 1596–1603 (2006). [CrossRef] [PubMed]
  21. M.-L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express14(10), 4445–4451 (2006). [CrossRef] [PubMed]
  22. Nonlinear Photonic Crystal Fiber NL-1050-NEG-1, http://www.nktphotonics.com
  23. H. Wang, C. P. Fleming, and A. M. Rollins, “Ultrahigh-resolution optical coherence tomography at 1.15 mum using photonic crystal fiber with no zero-dispersion wavelengths,” Opt. Express15(6), 3085–3092 (2007). [CrossRef] [PubMed]
  24. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express19(15), 13873–13879 (2011). [CrossRef] [PubMed]
  25. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  26. W. Q. Zhang, S. Afshar V, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express17(21), 19311–19327 (2009). [CrossRef] [PubMed]
  27. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16(18), 14004–14014 (2008). [CrossRef] [PubMed]
  28. X. Liu, J. Laegsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express18(15), 15475–15483 (2010). [CrossRef] [PubMed]
  29. SuperK series supercontinuum lasers, http://www.nktphotonics.com SC series supercontinuum lasers, http://www.fianium.com
  30. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron.28(4), 908–920 (1992). [CrossRef]
  31. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  32. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997). [CrossRef] [PubMed]
  33. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B1(2), 139–149 (1984). [CrossRef]
  34. W. J. Tomlinson and W. H. Knox, “Limits of fiber-grating optical pulse compression,” J. Opt. Soc. Am. B4(9), 1404–1411 (1987). [CrossRef]
  35. R. L. Fork, C. H. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett.12(7), 483–485 (1987). [CrossRef] [PubMed]
  36. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett.22(8), 522–524 (1997). [CrossRef] [PubMed]
  37. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett.22(2), 102–104 (1997). [CrossRef] [PubMed]
  38. S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B76(3), 267–275 (2003). [CrossRef]
  39. Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B86(4), 567–572 (2007). [CrossRef]
  40. J. Thornes, P. Poon, and M. E. Anderson, “Single-iteration compression of femtosecond laser pulses,” J. Opt. Soc. Am. B21(7), 1387–1390 (2004). [CrossRef]
  41. N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, “Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation,” J. Opt. Soc. Am. B18(11), 1742–1746 (2001). [CrossRef]
  42. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Dordrecht, 2002).
  43. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett.28(20), 1987–1989 (2003). [CrossRef] [PubMed]
  44. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation,” Opt. Lett.28(22), 2258–2260 (2003). [CrossRef] [PubMed]
  45. M. Adachi, K. Yamane, R. Morita, and M. Yamashita, “Sub-5-fs pulse compression of laser output using photonic crystal fiber with short zero-dispersion wavelength,” Jpn. J. Appl. Phys.44(47), L1423–L1425 (2005). [CrossRef]
  46. E. Matsubara, K. Yamane, T. Sekikawa, and M. Yamashita, “Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber,” J. Opt. Soc. Am. B24(4), 985–989 (2007). [CrossRef]
  47. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett.23(10), 792–794 (1998). [CrossRef] [PubMed]
  48. H. Tu and S. A. Boppart, “Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy,” Proc. SPIE7569, 75692CD (2010).
  49. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B11(1), 92–101 (1994). [CrossRef]
  50. S. Coen, A. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19(4), 753–764 (2002). [CrossRef]
  51. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J. Opt. Soc. Am. B19(9), 2165–2170 (2002). [CrossRef]
  52. V. L. Kalashnikov, P. Dombi, T. Fuji, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, R. S. Windeler, and A. Apolonski, “Maximization of supercontinua in photonic crystal fibers by using double pulses and polarization effects,” Appl. Phys. B77(2-3), 319–324 (2003). [CrossRef]
  53. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express12(5), 791–796 (2004). [CrossRef] [PubMed]
  54. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.26(8), 488–490 (2001). [CrossRef] [PubMed]
  55. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B21(2), 249–257 (2004). [CrossRef]
  56. M. Tianprateep, J. Tada, and F. Kannari, “Influence of polarization and pulse shape of femtosecond initial laser pulses on spectral broadening in microstructure fibers,” Opt. Rev.12(3), 179–189 (2005). [CrossRef]
  57. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).
  58. M. Legré, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol.21(12), 3374–3378 (2003). [CrossRef]
  59. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun.241(4-6), 339–348 (2004). [CrossRef]
  60. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. Folkenberg, and M. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express12(24), 5931–5939 (2004). [CrossRef] [PubMed]
  61. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett.20(8), 866–868 (1995). [CrossRef] [PubMed]
  62. B. Washburn, S. Ralph, and R. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Opt. Express10(13), 575–580 (2002). [PubMed]
  63. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301(5640), 1705–1708 (2003). [CrossRef] [PubMed]
  64. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, St. Coen, and R. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express10(21), 1215–1221 (2002). [PubMed]
  65. A. Efimov, A. Taylor, F. Omenetto, A. Yulin, N. Joly, F. Biancalana, D. Skryabin, J. Knight, and P. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express12(26), 6498–6507 (2004). [CrossRef] [PubMed]
  66. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003). [CrossRef] [PubMed]
  67. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  68. F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, “Vector soliton fission,” Phys. Rev. Lett.93(18), 183901 (2004). [CrossRef] [PubMed]
  69. A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, M. Åslund, B. Ashton, M. Stevenson, J. Digweed, A. Lau, and D. Scandurra, “Spun elliptically birefringent photonic crystal fibre,” Opt. Express15(4), 1811–1816 (2007). [CrossRef] [PubMed]
  70. A. Argyros, J. Pla, F. Ladouceur, and L. Poladian, “Circular and elliptical birefringence in spun microstructured optical fibres,” Opt. Express17(18), 15983–15990 (2009). [CrossRef] [PubMed]
  71. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25(11), 1938–1948 (2008). [CrossRef]
  72. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett.31(10), 1379–1381 (2006). [CrossRef] [PubMed]
  73. B. J. Chick, J. W. Chon, and M. Gu, “Polarization effects in a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths,” Opt. Express16(24), 20099–20105 (2008). [CrossRef] [PubMed]
  74. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett.82(14), 2197–2199 (2003). [CrossRef]
  75. A. Proulx, J.-M. Ménard, N. Hô, J. Laniel, R. Vallée, and C. Paré, “Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers,” Opt. Express11(25), 3338–3345 (2003). [CrossRef] [PubMed]
  76. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett.28(23), 2306–2308 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited