OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1141–1150

Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length

Meisong Liao, Weiqing Gao, Zhongchao Duan, Xin Yan, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1141-1150 (2012)
http://dx.doi.org/10.1364/OE.20.001141


View Full Text Article

Enhanced HTML    Acrobat PDF (1307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate theoretically and experimentally that it is feasible to draw the microstructured fiber with longitudinally varying diameter (FLVD) whose diameter varies sharply in a short fiber length. It is elucidated that during the fiber drawing process the tension is linearly proportional to the natural logarithm of the fiber drawing speed. As a result, the tension is not so sensitive to the fiber diameter. Moreover, this sensitivity can be decreased by using a large diameter ratio of preform to fiber. Owing to the low sensitivity the FLVD with diameter varying sharply in a short fiber length can be drawn directly from the preform. Additionally we show that the microstructural geometry of FLVD does not depend on the varying diameter. The deformation in microstructural geometry is determined by the fiber segment with the smallest diameter. We fabricate a FLVD of which the diameter decreases by 75% in a fiber length of 10 cm. By using this fiber we demonstrate the 600-1800 nm supercontinuum (SC) generation and the 532 nm second harmonic generation pumped by a picosecond fiber laser. The SC spectra by the conventional fibers with the largest and the smallest diameters of the FLVD are also shown, respectively. The comparisons show that the FLVD has the broadest SC spectrum due to its high nonlinearity, varying dispersion, and high damage threshold.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.0190) Nonlinear optics : Nonlinear optics
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 22, 2011
Manuscript Accepted: November 23, 2011
Published: January 4, 2012

Citation
Meisong Liao, Weiqing Gao, Zhongchao Duan, Xin Yan, Takenobu Suzuki, and Yasutake Ohishi, "Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length," Opt. Express 20, 1141-1150 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1141


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864 –2869 (2004). [CrossRef] [PubMed]
  2. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008). [CrossRef] [PubMed]
  3. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15(9), 5431–5438 (2007). [CrossRef] [PubMed]
  4. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “Investigation of single-mode–multimode–single-mode and single-mode–tapered-multimode–single-mode fiber structures and their application for refractive index sensing,” J. Opt. Soc. Am. B28(5), 1180–1186 (2011). [CrossRef]
  5. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett.27(10), 812–814 (2002). [CrossRef] [PubMed]
  6. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett.32(4), 331–333 (2007). [CrossRef] [PubMed]
  7. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett.13(1), 52–54 (2001). [CrossRef]
  8. S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011). [CrossRef] [PubMed]
  9. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B81(2–3), 377–387 (2005). [CrossRef]
  10. Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express12(14), 3209–3217 (2004). [CrossRef] [PubMed]
  11. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett.33(20), 2407–2409 (2008). [CrossRef] [PubMed]
  12. A. A. Sysoliatin, A. K. Senatorov, A. I. Konyukhov, L. A. Melnikov, and V. A. Stasyuk, “Soliton fission management by dispersion oscillating fiber,” Opt. Express15(25), 16302–16307 (2007). [CrossRef] [PubMed]
  13. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  14. S. Middleman, The Flow of High Polymers (Interscience, 1968), Ch. 1.
  15. M. Liao, X. Yan, Z. Duan, T. Suzuki, and Y. Ohishi, “Tellurite photonic nanostructured fiber,” J. Lightwave Technol.29(7), 1018–1025 (2011). [CrossRef]
  16. W. Burns, M. Abebe, C. Villarruel, and R. P. Moeller, “Loss mechanisms in single-mode fiber tapers,” J. Lightwave Technol.4(6), 608–613 (1986). [CrossRef]
  17. W. Margulis and U. Osterberg, “Second-harmonic generation in optical glass fibers,” J. Opt. Soc. Am. B5(2), 312–316 (1988). [CrossRef]
  18. B. Lesche, “Microscopic model of second-harmonic generation in glass fibers,” J. Opt. Soc. Am. B7(1), 53–56 (1990). [CrossRef]
  19. D. M. Krol and J. R. Simpson, “Photoinduced second-harmonic generation in rare-earth-doped aluminosilicate optical fibers,” Opt. Lett.16(21), 1650–1652 (1991). [CrossRef] [PubMed]
  20. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  21. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited