OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1184–1201

Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems

Kang Tan, Jing Shao, Junqiang Sun, and Jian Wang  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1184-1201 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a scheme for optical ultrawideband (UWB) pulse generation by exploiting a half-carrier-suppressed Mach–Zehnder modulator (MZM) and a delay-interferometer- and wavelength-division-multiplexer-based, reconfigurable and multi-channel differentiator (DWRMD). Multi-wavelength, polarity- and shape-switchable UWB pulses of monocycle, doublet, triplet, and quadruplet are experimentally generated simply by tuning two bias voltages to modify the carrier-suppression ratio of MZM and the differential order of DWRMD respectively. The pulse position modulation, pulse shape modulation, pulse amplitude modulation and binary phase-shift keying modulation of UWB pulses can also be conveniently realized with the same scheme structure, which indicates that the hybrid modulation of those four formats can be achieved. Consequently, the proposed approach has potential applications in multi-shape, multi-modulation and multi-access UWB-over-fiber communication systems.

© 2012 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 6, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: December 12, 2011
Published: January 5, 2012

Kang Tan, Jing Shao, Junqiang Sun, and Jian Wang, "Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems," Opt. Express 20, 1184-1201 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003). [CrossRef]
  2. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag.41(7), 66–74 (2003). [CrossRef]
  3. J. Yao, F. Zeng, and Q. Wang, “Photonic Generation of Ultrawideband Signals,” J. Lightwave Technol.25(11), 3219–3235 (2007). [CrossRef]
  4. S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010). [CrossRef]
  5. R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag.43(2), 80–87 (2005). [CrossRef]
  6. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006). [CrossRef]
  7. J. Dong, X. Zhang, J. Xu, and D. Huang, “All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier,” Opt. Lett.32(15), 2158–2160 (2007). [CrossRef] [PubMed]
  8. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express18(25), 26259–26267 (2010). [CrossRef] [PubMed]
  9. H. Huang, K. Xu, J. Li, J. Wu, X. Hong, and J. Lin, “UWB Pulse Generation and Distribution Using a NOLM Based Optical Switch,” J. Lightwave Technol.26(15), 2635–2640 (2008). [CrossRef]
  10. J. Li, B. P. P. Kuo, and K. Kin-Yip Wong, “Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier,” IEEE Photon. Technol. Lett.21(4), 212–214 (2009). [CrossRef]
  11. J. Wang and J. Sun, “All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses,” IEEE Photon. Technol. Lett.22(3), 140–142 (2010). [CrossRef]
  12. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express17(5), 3521–3530 (2009). [CrossRef] [PubMed]
  13. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron.45(3), 292–299 (2009). [CrossRef]
  14. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express15(26), 18156–18161 (2007). [CrossRef] [PubMed]
  15. X. Feng, Z. Li, B.-O. Guan, C. Lu, H. Y. Tam, and P. K. A. Wai, “Switchable UWB pulse generation using a polarization maintaining fiber Bragg grating as frequency discriminator,” Opt. Express18(4), 3643–3648 (2010). [CrossRef] [PubMed]
  16. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett.33(3), 222–224 (2008). [CrossRef] [PubMed]
  17. H. Lv, Y. Yu, T. Shu, D. Huang, S. Jiang, and L. P. Barry, “Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser,” Opt. Express18(7), 7219–7227 (2010). [CrossRef] [PubMed]
  18. M. Abtahi, M. Dastmalchi, S. LaRochelle, and L. A. Rusch, “Generation of Arbitrary UWB Waveforms by Spectral Pulse Shaping and Thermally-Controlled Apodized FBGs,” J. Lightwave Technol.27(23), 5276–5283 (2009). [CrossRef]
  19. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36(12), 2363–2365 (2011). [CrossRef] [PubMed]
  20. M. Mirshafiei, M. Dastmalchi, M. Abtahi, S. LaRochelle, and L. A. Rusch, “Optical distribution of UWB: Low complexity pulse generation supporting OOK and PSK,” in Proceedings of IEEE Topical Meeting on Microwave Photonics (MWP) 2010, pp. 346–349 (2010).
  21. Y. Dai and J. Yao, “High-Chip-Count UWB Biphase Coding for Multiuser UWB-Over-Fiber System,” J. Lightwave Technol.27(11), 1448–1453 (2009). [CrossRef]
  22. M. Jazayerifar, B. Cabon, and J. A. Salehi, “Transmission of Multi-Band OFDM and Impulse Radio Ultra-Wideband Signals Over Single Mode Fiber,” J. Lightwave Technol.26(15), 2594–2603 (2008). [CrossRef]
  23. M. Abtahi and L. A. Rusch, “RoF Delivery over PONs of Optically Shaped UWB Signals for Gigabit/s Wireless Distribution in the Home,” IEEE J. Sel. Areas Comm.29(6), 1304–1310 (2011). [CrossRef]
  24. X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett.21(17), 1235–1237 (2009). [CrossRef]
  25. Y. Wang and X. Dong, “A time-division multiple-access SC-FDE system with IBI suppression for UWB communications,” IEEE J. Sel. Areas Comm.24(4), 920–926 (2006). [CrossRef]
  26. S. H. Song and Q. T. Zhang, “CDMA-PPM for UWB Impulse Radio,” IEEE Trans. Vehicular Technol.57(2), 1011–1020 (2008). [CrossRef]
  27. P. Ou, Y. Zhang, and C.-X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express16(7), 5130–5135 (2008). [CrossRef] [PubMed]
  28. Y. Dai and J. Yao, “Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating,” J. Lightwave Technol.26(15), 2513–2520 (2008). [CrossRef]
  29. S. Abraha, N. Tran, C. Okonkwo, H. Chen, E. Tangdiongga, and A. Koonen, “Service Multicasting by All-Optical Routing of 1 Gb/s IR UWB for In-Building Networks,” in Proceedings of Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2011, paper JWA68 (2011).
  30. S. Abraha, C. Okonkwo, H. Yang, D. Visani, Y. Shi, H.-D. Jung, E. Tangdiongga, and T. Koonen, “Performance Evaluation of IR-UWB in Short-Range Fiber Communication Using Linear Combination of Monocycles,” J. Lightwave Technol.29(8), 1143–1151 (2011). [CrossRef]
  31. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microw. Theory Tech.53(10), 3090–3097 (2005). [CrossRef]
  32. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  33. S. Pan and J. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm.28(6), 889–900 (2010). [CrossRef]
  34. R. C. Qiu, “A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J. Sel. Areas Comm.20(9), 1628–1637 (2002). [CrossRef]
  35. I. S. Lin and A. M. Weiner, “Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals,” J. Lightwave Technol.26(15), 2692–2699 (2008). [CrossRef]
  36. J. Dederer, B. Schleicher, A. Trasser, T. Feger, and H. Schumacher, “A fully monolithic 3.1-10.6 GHz UWB Si/SiGe HBT Impulse-UWB correlation receiver,” in Proceedings of IEEE International Conference on Ultra-Wideband, ICUWB 2008, pp. 33–36 (2008).
  37. T. Li, H. Zhou, and M. Yi, “Gray Coded PPM Performance with Imperfect Slot Synchronization in Optical Communication,” in Proceedings of Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TUP11_30 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited