OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1253–1260

Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1253-1260 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub-THz signals. The analysis of the synthesized sub-THz signals up to 120 GHz gives as a result an effective reduction of the electrical linewidth when compared to direct harmonic generation that begins at 50 GHz and becomes greater as the frequency increases. The phase noise reduction offered by the setup, along with its integration potential, cost and bandwidth, make it a promising candidate to the development of an integrated and high performance low phase noise local oscillator in the sub-THz range.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(350.4010) Other areas of optics : Microwaves
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 28, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: December 19, 2011
Published: January 5, 2012

A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind, "Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering," Opt. Express 20, 1253-1260 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech.50(3), 910–928 (2002). [CrossRef]
  2. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt.49(19), E48–E57 (2010). [CrossRef] [PubMed]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  4. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol.28, 526–538 (2009).
  5. X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron.5(5), 202–206 (2011). [CrossRef]
  6. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, and T. Nagatsuma, “Broadband-Frequency-Tunable Sub-Terahertz Wave Generation Using an Optical Comb, AWGs, Optical Switches, and a Uni-Traveling Carrier Photodiode for Spectroscopic Applications,” J. Lightwave Technol.26(15), 2521–2530 (2008). [CrossRef]
  7. H. Ito, T. Furuta, F. Nakajima, K. Yoshino, and T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. Lightwave Technol.23(12), 4016–4021 (2005). [CrossRef]
  8. P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing,” Electron. Lett.42(16), 928–929 (2006). [CrossRef]
  9. P. Acedo, G. Carpintero, A. R. Criado, and K. Yvind, “Photonic Synthesis of sub-THz Signals Using Mode-Locked Single QW Lasers and Tunable Fabry-Perot Fiber Filters,” in European Microwave Week EuMIC11-4, Paris, France (2011).
  10. P. Vasil’ev, Ultrafast Diode Lasers: Fundamentals and Applications (Artech House Publishers, 1995).
  11. K. Yvind, D. Larsson, L. J. Christiansen, J. Mork, J. M. Hvam, and J. Hanberg, “High-performance 10 GHz all-active monolithic modelocked semiconductor lasers,” Electron. Lett.40(12), 735–737 (2004). [CrossRef]
  12. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode,” IEEE Photon. Technol. Lett.21(6), 389–391 (2009). [CrossRef]
  13. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B14(1), 167–174 (1997). [CrossRef]
  15. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express18(11), 11105–11110 (2010). [CrossRef] [PubMed]
  16. E. Sooudi, G. Huyet, J. G. McInerney, F. Lelarge, K. Merghem, R. Rosales, A. Martinez, A. Ramdane, and S. P. Hegarty, “Injection-Locking Properties of InAs/InP-Based Mode-Locked Quantum-Dash Lasers at 21 GHz,” IEEE Photon. Technol. Lett.23(20), 1544–1546 (2011). [CrossRef]
  17. S. Gee, F. Quinlan, S. Ozharar, and P. Delfyett, “Two-mode beat phase noise of actively modelocked lasers,” Opt. Express13(11), 3977–3982 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited