OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1261–1267

Numerical simulation of nonlinear field distributions in two-dimensional optical superlattices

Ming-shuai Zhou, Jun-chao Ma, Chao Zhang, and Yi-qiang Qin  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1261-1267 (2012)
http://dx.doi.org/10.1364/OE.20.001261


View Full Text Article

Enhanced HTML    Acrobat PDF (1421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A finite difference method in real space is presented for calculating nonlinear optical processes in two-dimensional optical superlattices. The focused second-harmonic generation under the local quasi-phase-matched condition is calculated as an example. The field distribution of both the fundamental and the harmonic wave can be simulated well using this method, and the result agrees well with previous theoretical predictions and experimental studies. It is shown that this method is a simple and rapid technique to analysis nonlinear processes in optical superlattices.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(200.0200) Optics in computing : Optics in computing

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 2, 2011
Revised Manuscript: December 18, 2011
Manuscript Accepted: December 20, 2011
Published: January 5, 2012

Citation
Ming-shuai Zhou, Jun-chao Ma, Chao Zhang, and Yi-qiang Qin, "Numerical simulation of nonlinear field distributions in two-dimensional optical superlattices," Opt. Express 20, 1261-1267 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962). [CrossRef]
  2. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun.142(4-6), 265–268 (1997). [CrossRef]
  3. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4.,” Opt. Lett.23(24), 1883–1885 (1998). [CrossRef] [PubMed]
  4. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B14(12), 3368 (1997). [CrossRef]
  5. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science278(5339), 843–846 (1997). [CrossRef]
  6. R. W. Boyd, Nonlinear Optics (Elsevier Science, 2003).
  7. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998). [CrossRef]
  8. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett.100(6), 063902 (2008). [CrossRef] [PubMed]
  9. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett.93(13), 133904 (2004). [CrossRef] [PubMed]
  10. J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A80(1), 013801 (2009). [CrossRef]
  11. C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “Perfect quasi-phase matching for the third-harmonic generation using focused Gaussian beams,” Opt. Lett.33(7), 720–722 (2008). [CrossRef] [PubMed]
  12. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics3, 395–398 (2009). [CrossRef]
  13. I. Dolev, T. Ellenbogen, and A. Arie, “Switching the acceleration direction of Airy beams by a nonlinear optical process,” Opt. Lett.35(10), 1581–1583 (2010). [CrossRef] [PubMed]
  14. M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B Condens. Matter49(4), 2313–2322 (1994). [CrossRef] [PubMed]
  15. F. R. Montero de Espinosa, E. Jimenez, and M. Torres, “Ultrasonic band gap in a periodic two-dimensional composite,” Phys. Rev. Lett.80(6), 1208–1211 (1998). [CrossRef]
  16. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter51(23), 16635–16642 (1995). [CrossRef] [PubMed]
  17. Y. Tanaka, Y. Tomoyasu, and S. I. Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B62(11), 7387–7392 (2000). [CrossRef]
  18. M. M. Sigalas and N. Garcia, “Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: The aluminum in mercury case,” Appl. Phys. Lett.76(16), 2307 (2000). [CrossRef]
  19. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic,χ(2)χ(3) ” J. Lightwave Technol.24(1), 624–634 (2006). [CrossRef]
  20. A. Massaro, V. Tasco, M. T. Todaro, T. Stomeo, R. Cingolani, M. De Vittorio, and A. Passaseo, “FEM design and modeling ofχ(2),” J. Lightwave Technol.27, 4262–4268 (2009). [CrossRef]
  21. R. Drezek, A. Dunn, and R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express6(7), 147–157 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited