OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1337–1359

Efficient reduction of speckle noise in Optical Coherence Tomography

Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1337-1359 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speckle pattern, which is inherent in coherence imaging, influences significantly axial and transversal resolution of Optical Coherence Tomography (OCT) instruments. The well known speckle removal techniques are either sensitive to sample motion, require sophisticated and expensive sample tracking systems, or involve sophisticated numerical procedures. As a result, their applicability to in vivo real-time imaging is limited. In this work, we propose to average multiple A-scans collected in a fully controlled way to reduce the speckle contrast. This procedure involves non-coherent averaging of OCT A-scans acquired from adjacent locations on the sample. The technique exploits scanning protocol with fast beam deflection in the direction perpendicular to lateral dimension of the cross-sectional image. Such scanning protocol reduces the time interval between A-scans to be averaged to the repetition time of the acquisition system. Consequently, the averaging algorithm is immune to bulk motion of an investigated sample, does not require any sophisticated data processing to align cross-sectional images, and allows for precise control of lateral shift of the scanning beam on the object. The technique is tested with standard Spectral OCT system with an extra resonant scanner used for rapid beam deflection in the lateral direction. Ultrahigh speed CMOS camera serves as a detector and acquires 200,000 spectra per second. A dedicated A-scan generation algorithm allows for real-time display of images with reduced speckle contrast at 6 frames/second. This technique is applied to in vivo imaging of anterior and posterior segments of the human eye and human skin.

© 2012 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(100.6950) Image processing : Tomographic image processing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(350.5730) Other areas of optics : Resolution

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 28, 2011
Revised Manuscript: December 20, 2011
Manuscript Accepted: December 22, 2011
Published: January 6, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Maciej Szkulmowski, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski, "Efficient reduction of speckle noise in Optical Coherence Tomography," Opt. Express 20, 1337-1359 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  3. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  4. P. Targowski, M. Iwanicka, L. Tymińska-Widmer, M. Sylwestrzak, and E. A. Kwiatkowska, “Structural examination of easel paintings with optical coherence tomography,” Acc. Chem. Res.43(6), 826–836 (2010). [CrossRef] [PubMed]
  5. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  7. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  8. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66(11), 1145–1150 (1976). [CrossRef]
  9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef]
  10. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000). [CrossRef] [PubMed]
  11. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005). [CrossRef] [PubMed]
  12. D. D. Duncan, S. J. Kirkpatrick, and R. K. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008). [CrossRef] [PubMed]
  13. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt.8(3), 570–575 (2003). [CrossRef] [PubMed]
  14. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt.12(4), 041207 (2007). [CrossRef] [PubMed]
  15. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt.12(4), 041206 (2007). [CrossRef] [PubMed]
  16. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett.29(1), 68–70 (2004). [CrossRef] [PubMed]
  17. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  18. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  19. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. C. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  20. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005). [CrossRef] [PubMed]
  21. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006). [CrossRef] [PubMed]
  22. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998). [CrossRef] [PubMed]
  23. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A24(12), 3728–3734 (2007). [CrossRef] [PubMed]
  24. A. E. Desjardins, B. J. Vakoc, A. Bilenca, G. J. Tearney, and B. E. Bouma, “Estimation of the scattering coefficients of turbid media using angle-resolved optical frequency-domain imaging,” Opt. Lett.32(11), 1560–1562 (2007). [CrossRef] [PubMed]
  25. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt.42(16), 3027–3037 (2003). [CrossRef] [PubMed]
  26. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express11(18), 2190–2197 (2003). [CrossRef] [PubMed]
  27. T. Støren, A. Røyset, L. O. Svaasand, and T. Lindmo, “Functional imaging of dye concentration in tissue phantoms by spectroscopic optical coherence tomography,” J. Biomed. Opt.10(2), 024037 (2005). [CrossRef] [PubMed]
  28. T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010). [CrossRef] [PubMed]
  29. Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt.12(5), 050504 (2007). [CrossRef] [PubMed]
  30. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  31. H. Tanna, A. M. Dubis, N. Ayub, D. M. Tait, J. Rha, K. E. Stepien, and J. Carroll, “Retinal imaging using commercial broadband optical coherence tomography,” Br. J. Ophthalmol.94(3), 372–376 (2010). [CrossRef] [PubMed]
  32. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Backscattering spectroscopic contrast with angle-resolved optical coherence tomography,” Opt. Lett.32(21), 3158–3160 (2007). [CrossRef] [PubMed]
  33. S. G. Adie, T. R. Hillman, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors,” Opt. Express15(26), 18033–18049 (2007). [CrossRef] [PubMed]
  34. J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging19(12), 1261–1266 (2000). [CrossRef] [PubMed]
  35. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett.29(24), 2878–2880 (2004). [CrossRef] [PubMed]
  36. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007). [CrossRef] [PubMed]
  37. P. Puvanathasan and K. Bizheva, “Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set,” Opt. Express15(24), 15747–15758 (2007). [CrossRef] [PubMed]
  38. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express16(16), 12313–12333 (2008). [CrossRef] [PubMed]
  39. S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform,” J. Biomed. Opt.14(1), 014031 (2009). [CrossRef] [PubMed]
  40. Z. P. Jian, Z. X. Yu, L. F. Yu, B. Rao, Z. P. Chen, and B. J. Tromberg, “Speckle attenuation in optical coherence tomography by curvelet shrinkage,” Opt. Lett.34(10), 1516–1518 (2009). [CrossRef] [PubMed]
  41. Z. P. Jian, L. F. Yu, B. Rao, B. J. Tromberg, and Z. P. Chen, “Three-dimensional speckle suppression in Optical Coherence Tomography based on the curvelet transform,” Opt. Express18(2), 1024–1032 (2010). [CrossRef] [PubMed]
  42. K. M. Yung, S. L. Lee, and J. M. Schmitt, “Phase-domain processing of optical coherence tomography images,” J. Biomed. Opt.4(1), 125–136 (1999). [CrossRef]
  43. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010). [CrossRef] [PubMed]
  44. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A22(11), 2366–2371 (2005). [CrossRef] [PubMed]
  45. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol.42(7), 1427–1439 (1997). [CrossRef] [PubMed]
  46. H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson, and Z. P. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett.27(19), 1702–1704 (2002). [CrossRef] [PubMed]
  47. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003). [CrossRef] [PubMed]
  48. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett.29(7), 736–738 (2004). [CrossRef] [PubMed]
  49. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, “Optical coherence tomography speckle reduction by a partially spatially coherent source,” J. Biomed. Opt.10(6), 064034 (2005). [CrossRef] [PubMed]
  50. T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007). [CrossRef] [PubMed]
  51. Z. J. Yuan, B. Chen, H. G. Ren, and Y. T. Pan, “On the possibility of time-lapse ultrahigh-resolution optical coherence tomography for bladder cancer grading,” J. Biomed. Opt.14(5), 050502 (2009). [CrossRef] [PubMed]
  52. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18(15), 15820–15831 (2010). [CrossRef] [PubMed]
  53. R. K. K. Wang and Z. H. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  54. D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005). [CrossRef] [PubMed]
  55. M. Hangai, M. Yamamoto, A. Sakamoto, and N. Yoshimura, “Ultrahigh-resolution versus speckle noise-reduction in spectral-domain optical coherence tomography,” Opt. Express17(5), 4221–4235 (2009). [CrossRef] [PubMed]
  56. Heidelberg Engineering, “Spectralis,” http://www.heidelbergengineering.com/products/spectralis-models/ .
  57. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003). [CrossRef] [PubMed]
  58. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512 (2009). [CrossRef] [PubMed]
  59. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007). [CrossRef] [PubMed]
  60. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Appl. Opt.49(1), 99–107 (2010). [CrossRef] [PubMed]
  61. D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun.269(1), 247–251 (2007). [CrossRef]
  62. B. F. Kennedy, T. R. Hillman, A. Curatolo, and D. D. Sampson, “Speckle reduction in optical coherence tomography by strain compounding,” Opt. Lett.35(14), 2445–2447 (2010). [CrossRef] [PubMed]
  63. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Speckle averaging for optical coherence tomography by vibration of a thin water film,” Proc. SPIE5316, 391–396 (2004). [CrossRef]
  64. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009). [CrossRef] [PubMed]
  65. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008). [CrossRef] [PubMed]
  66. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  67. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004). [CrossRef] [PubMed]
  68. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  69. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  70. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(16), 14281–14297 (2009). [CrossRef] [PubMed]
  71. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006). [CrossRef] [PubMed]
  72. J. W. Goodman, Statistical Optics (Wiley, New York, 2000).
  73. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging28(6), 814–821 (2009). [CrossRef] [PubMed]
  74. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  75. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (7271 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited