OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1370–1377

Diffractive generalized phase contrast for adaptive phase imaging and optical security

Darwin Palima and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1370-1377 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for on-the-fly optimization of the input aperture parameters according to desired output characteristics. For wavefront sensing, the achieved aperture control opens a new degree of freedom for improving the accuracy of quantitative phase imaging. Diffractive GPC input modulation also fits well with grating-based optical security applications and can be used to create phase-based information channels for enhanced information security.

© 2012 OSA

OCIS Codes
(090.1970) Holography : Diffractive optics
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology

ToC Category:
Imaging Systems

Original Manuscript: July 21, 2011
Revised Manuscript: September 14, 2011
Manuscript Accepted: October 3, 2011
Published: January 9, 2012

Darwin Palima and Jesper Glückstad, "Diffractive generalized phase contrast for adaptive phase imaging and optical security," Opt. Express 20, 1370-1377 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Whyte and J. Courtial, “Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm,” New J. Phys.7, 117–117 (2005). [CrossRef]
  2. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, “Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators,” Opt. Lett.34(1), 34–36 (2009). [CrossRef] [PubMed]
  3. V. Arrizón, U. Ruiz, G. Mendez, and A. Apolinar-Iribe, “Zero order synthetic hologram with a sinusoidal phase carrier for generation of multiple beams,” Opt. Express17(4), 2663–2669 (2009). [CrossRef] [PubMed]
  4. J. A. Davis, J. Guertin, and D. M. Cottrell, “Diffraction-free beams generated with programmable spatial light modulators,” Appl. Opt.32(31), 6368–6370 (1993). [CrossRef] [PubMed]
  5. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett.34(9), 1456–1458 (2009). [CrossRef] [PubMed]
  6. M. Antkowiak, M. L. Torres-Mapa, F. Gunn-Moore, and K. Dholakia, “Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection,” J Biophoton.3(10-11), 696–705 (2010). [CrossRef] [PubMed]
  7. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87(3), 031101 (2005). [CrossRef]
  8. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010). [CrossRef] [PubMed]
  9. J. Liesener, M. Reicherter, T. Haist, and H. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000). [CrossRef]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  11. J. P. Kirk and A. L. Jones, “Phase-Only Complex-Valued Spatial Filter,” J. Opt. Soc. Am.61(8), 1023–1028 (1971). [CrossRef]
  12. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt.38(23), 5004–5013 (1999). [CrossRef] [PubMed]
  13. H. Goto, T. Konishi, and K. Itoh, “Simultaneous amplitude and phase modulation by a discrete phase-only filter,” Opt. Lett.34(5), 641–643 (2009). [CrossRef] [PubMed]
  14. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev.5(1), 81–101 (2011). [CrossRef]
  15. G. Mínguez-Vega, V. R. Supradeepa, O. Mendoza-Yero, and A. M. Weiner, “Reconfigurable all-diffractive optical filters using phase-only spatial light modulators,” Opt. Lett.35(14), 2406–2408 (2010). [CrossRef] [PubMed]
  16. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics (Springer, 2009)
  17. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008). [CrossRef] [PubMed]
  18. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt.24(18), 3049 (1985). [CrossRef] [PubMed]
  19. P. J. Rodrigo, D. Palima, and J. Glückstad, “Accurate quantitative phase imaging using generalized phase contrast,” Opt. Express16(4), 2740–2751 (2008). [CrossRef] [PubMed]
  20. P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett.25(8), 566–568 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited