OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1450–1464

Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers

Bo Meng and Qi Jie Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1450-1464 (2012)
http://dx.doi.org/10.1364/OE.20.001450


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we report for the first time to our knowledge theoretical investigation of modulation responses of injection-locked mid-infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 μm, respectively. It is shown through a three-level rate equations model that the direct intensity modulation of QCLs gives the maximum modulation bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the injection locking scheme, we find that the modulation bandwidths of up to ~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, respectively, with an injection ratio of 5 dB. The result also shows that an ultrawide modulation bandwidth of more than 200 GHz is possible with a 10 dB injection ratio for QCLs at 9 μm. An important characteristic of injection-locked QCLs is the nonexistence of unstable locking region in the locking map, in contrast to their diode laser counterparts. We attribute this to the ultra-short upper laser state lifetimes of QCLs.

© 2012 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 15, 2011
Manuscript Accepted: December 1, 2011
Published: January 9, 2012

Citation
Bo Meng and Qi Jie Wang, "Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers," Opt. Express 20, 1450-1464 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1450


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003). [CrossRef]
  2. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron.44(1), 90–99 (2008). [CrossRef]
  3. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008). [CrossRef] [PubMed]
  4. N. B. Terry, N. A. Naderi, M. Pochet, A. J. Moscho, L. F. Lester, and V. Kovanis, “Bandwidth enhancement of injection-locked 1.3 μm quantum-dot DFB laser,” Electron. Lett.44(15), 904–905 (2008). [CrossRef]
  5. S. H. Lee, D. Parekh, T. Shindo, W. J. Yang, P. Guo, D. Takahashi, N. Nishiyama, C. J. Chang-Hasnain, and S. Arai, “Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions,” Opt. Express18(16), 16370–16378 (2010). [CrossRef] [PubMed]
  6. R. Martini, R. Paiella, C. Gmachl, F. Capasso, E. A. Whittaker, H. C. Liu, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-speed digital data transmission using mid-infrared quantum cascade lasers,” Electron. Lett.37(21), 1290–1291 (2001). [CrossRef]
  7. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers,” Electron. Lett.38(4), 181–183 (2002). [CrossRef]
  8. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanban-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm,” Appl. Phys. Lett.92, 111110 (2008).
  9. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett.92(10), 101105 (2008). [CrossRef]
  10. P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, “Quantum cascade lasers and the Kruse model in free space optical communication,” Opt. Express17(6), 4355–4359 (2009). [CrossRef] [PubMed]
  11. C. Y. L. Cheung, P. S. Spencer, and K. A. Shore, “Modulation bandwidth optimization for unipolar intersubband semiconductor lasers,” IEE Proc.: Optoelectron.144, 44–47 (1997). [CrossRef]
  12. C. Y. Cheung and K. A. Shore, “Self-consistent analysis of dc modulation response of unipolar semiconductor lasers,” J. Mod. Opt.45(6), 1219–1229 (1998). [CrossRef]
  13. N. Mustafa, L. Pesquera, C. Y. L. Cheung, and K. A. Shore, “Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers,” IEEE Photon. Technol. Lett.11(5), 527–529 (1999). [CrossRef]
  14. M. K. Haldar, “A simplified analysis of direct intensity modulation of quantum cascade lasers,” IEEE J. Quantum Electron.41(11), 1349–1355 (2005). [CrossRef]
  15. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, E. A. Whittaker, and H. C. Liu, “High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers,” Appl. Phys. Lett.79(16), 2526–2528 (2001). [CrossRef]
  16. S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, “13 GHz direct modulation of terahertz quantum cascade lasers,” Appl. Phys. Lett.91(14), 143510 (2007). [CrossRef]
  17. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
  18. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett.94(1), 011103 (2009). [CrossRef]
  19. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron.21(7), 784–793 (1985). [CrossRef]
  20. D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers,” J. Appl. Phys.91(11), 9019–9026 (2002). [CrossRef]
  21. F. Rana and R. J. Ram, “Current noise and photon noise in quantum cascade lasers,” Phys. Rev. B65(12), 125313 (2002). [CrossRef]
  22. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  23. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006). [CrossRef]
  24. J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett.31(17), 2574–2576 (2006). [CrossRef] [PubMed]
  25. M. Ishihara, T. Morimoto, S. Furuta, K. Kasahara, N. Akikusa, K. Fujita, and T. Edamura, “Linewidth enhancement factor of quantum cascade lasers with single phonon resonance-continuum depopulation structure on Peltier cooler,” Electron. Lett.45(23), 1168–1169 (2009). [CrossRef]
  26. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004). [CrossRef] [PubMed]
  27. P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express18(20), 20799–20816 (2010). [CrossRef]
  28. C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor laser,” IEEE J. Quantum Electron.21(8), 1152–1156 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited