OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1475–1482

Theory for upconversion of incoherent images

Jeppe Seidelin Dam, Christian Pedersen, and Peter Tidemand-Lichtenberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1475-1482 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1551 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Upconversion of images is a generic method for shifting the spectral content of entire images. A comprehensive theory for upconversion of incoherent light images is presented and compared against experiments. In particular we consider the important case for upconversion of infinity corrected light. We show that the spatial resolution for upconversion of incoherent light images is better than for the corresponding coherent image upconversion case. The fundamental differences between upconversion of coherent and incoherent images are investigated theoretically and experimentally. The theory includes the general case of upconversion using TEMnm modes.

© 2012 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(110.6820) Imaging systems : Thermal imaging
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Imaging Systems

Original Manuscript: December 15, 2011
Manuscript Accepted: December 19, 2011
Published: January 9, 2012

Jeppe Seidelin Dam, Christian Pedersen, and Peter Tidemand-Lichtenberg, "Theory for upconversion of incoherent images," Opt. Express 20, 1475-1482 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Midwinter, “Image conversion from 1.6 µ to the visible in lithium niobate,” Appl. Phys. Lett.12(3), 68–70 (1968). [CrossRef]
  2. J. Warner, “Spatial resolution measurements in up-conversion from 10.6 m to the visible,” Appl. Phys. Lett.13(10), 360–362 (1968). [CrossRef]
  3. J. F. Weller and R. A. Andrews, “Resolution measurements in parametric upconversion of images,” Opt. Quantum Electron.2(3), 171–176 (1970). [CrossRef]
  4. R. W. Boyd and C. H. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett.31(7), 440–442 (1977). [CrossRef]
  5. R. A. Andrews, “IR image parametric up-conversion,” IEEE J. Quantum Electron.6(1), 68–80 (1970). [CrossRef]
  6. A. H. Firester, “Image Upconversion: Part III,” J. Appl. Phys.41(2), 703–709 (1970). [CrossRef]
  7. J. Falk and W. B. Tiffany, “Theory of parametric upconversion of thermal images,” J. Appl. Phys.43(9), 3762–3769 (1972). [CrossRef]
  8. K. F. Hulme and J. Warner, “Theory of thermal imaging using infrared to visible image up-conversion,” Appl. Opt.11(12), 2956–2964 (1972). [CrossRef] [PubMed]
  9. W. Chiou, “Geometric optics theory of parametric image upconversion,” J. Appl. Phys.42(5), 1985–1993 (1971). [CrossRef]
  10. F. Devaux, A. Mosset, E. Lantz, S. Monneret, and H. Le Gall, “Image Upconversion from the Visible to the UV Domain: Application to Dynamic UV Microstereolithography,” Appl. Opt.40(28), 4953–4957 (2001). [CrossRef] [PubMed]
  11. P. M. Vaughan and R. Trebino, “Optical-parametric-amplification imaging of complex objects,” Opt. Express19(9), 8920–8929 (2011). [CrossRef] [PubMed]
  12. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, “High-resolution two-dimensional image upconversion of incoherent light,” Opt. Lett.35(22), 3796–3798 (2010). [CrossRef] [PubMed]
  13. S. Baldelli, “Sensing: Infrared image upconversion,” Nat. Photonics5(2), 75–76 (2011). [CrossRef]
  14. C. Pedersen, E. Karamehmedović, J. S. Dam, and P. Tidemand-Lichtenberg, “Enhanced 2D-image upconversion using solid-state lasers,” Opt. Express17(23), 20885–20890 (2009). [CrossRef] [PubMed]
  15. M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate,” Opt. Lett.23(9), 664–666 (1998). [CrossRef] [PubMed]
  16. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, “High-power optical parametric oscillation in large-aperture periodically poled KTiOPO(4),” Opt. Lett.25(3), 174–176 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited