OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1483–1490

Temperature dependence and aging effects on silicon nanowires photoluminescence

Pietro Artoni, Alessia Irrera, Fabio Iacona, Emanuele F. Pecora, Giorgia Franzò, and Francesco Priolo  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1483-1490 (2012)
http://dx.doi.org/10.1364/OE.20.001483


View Full Text Article

Enhanced HTML    Acrobat PDF (995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we describe the luminescence properties of Si nanowires (NWs) prepared by a maskless synthesis technique, based on the Au-catalyzed wet etching of Si substrates by an aqueous solution of H2O2 and HF. A strong room temperature photoluminescence (PL), centered at about 690 nm, is observed when Si NWs are optically excited. The detailed analysis of the steady-state and time-resolved PL properties of the system as a function of aging, temperature and pump power allows to demonstrate that the emission is due to the radiative recombination of quantum confined excitons. These results open the route towards novel applications of Si NWs in photonics as efficient light sources.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(350.3850) Other areas of optics : Materials processing
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optoelectronics

History
Original Manuscript: October 25, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 7, 2011
Published: January 9, 2012

Citation
Pietro Artoni, Alessia Irrera, Fabio Iacona, Emanuele F. Pecora, Giorgia Franzò, and Francesco Priolo, "Temperature dependence and aging effects on silicon nanowires photoluminescence," Opt. Express 20, 1483-1490 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Gösele, “How clean is too clean?” Nature440(7080), 34–35 (2006). [CrossRef] [PubMed]
  2. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  3. X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett.369(1–2), 220–224 (2003). [CrossRef]
  4. L. Pavesi and R. Turan, Silicon Nanocrystals. Fundamentals, Synthesis and Applications (Wiley-VCH, Weinheim, 2010).
  5. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett.4(5), 89–90 (1964). [CrossRef]
  6. B. J. Kim, J. Tersoff, S. Kodambaka, M. C. Reuter, E. A. Stach, and F. M. Ross, “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science322(5904), 1070–1073 (2008). [CrossRef] [PubMed]
  7. V. Schmidt, S. Senz, and U. Gösele, “Diameter-dependent growth direction of epitaxial silicon nanowires,” Nano Lett.5(5), 931–935 (2005). [CrossRef] [PubMed]
  8. M. Shao, L. Cheng, M. Zhang, D. D. D. Ma, J. A. Zapien, S.-T. Lee, and X. Zhang, “Nitrogen-doped silicon nanowires: synthesis and their blue cathodoluminescence and photoluminescence,” Appl. Phys. Lett.95(14), 143110 (2009). [CrossRef]
  9. O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, and N. Magnea, “Recombination dynamics of spatially confined electron-hole system in luminescent gold catalyzed silicon nanowires,” Nano Lett.9(7), 2575–2578 (2009). [CrossRef] [PubMed]
  10. S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett.10(11), 4423–4428 (2010). [CrossRef] [PubMed]
  11. J. Valenta, B. Bruhn, and J. Linnros, “Coexistence of 1D and quasi-0D photoluminescence from single silicon nanowires,” Nano Lett.11(7), 3003–3009 (2011). [CrossRef] [PubMed]
  12. A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, “Tunable light emission from quantum-confined excitons in TiSi2-catalyzed silicon nanowires,” Nano Lett.6(9), 2140–2144 (2006). [CrossRef] [PubMed]
  13. K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl.44(18), 2737–2742 (2005). [CrossRef] [PubMed]
  14. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon,” J. Phys. Chem. C114(24), 10683–10690 (2010). [CrossRef]
  15. K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small1(11), 1062–1067 (2005). [CrossRef] [PubMed]
  16. V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, “Roughness of silicon nanowire sidewalls and room temperature photoluminescence,” Phys. Rev. B82(12), 125446 (2010). [CrossRef]
  17. S. L. Cheng, C. H. Chung, and Y. H. Chang, “Formation kinetics and structures of high-density vertical Si nanowires on (111)Si substrates,” J. Ceram. Process. Res.10(3), 243–247 (2009).
  18. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, “Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions,” Nano Lett.9(7), 2519–2525 (2009). [CrossRef] [PubMed]
  19. H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology17(15), 3768–3774 (2006). [CrossRef]
  20. A. Irrera, P. Artoni, R. Saija, P. G. Gucciardi, M. A. Iatì, F. Borghese, P. Denti, F. Iacona, F. Priolo, and O. M. Maragò, “Size-scaling in optical trapping of silicon nanowires,” Nano Lett.11(11), 4879–4884 (2011). [CrossRef] [PubMed]
  21. A. C. Dillon, P. Gupta, M. B. Robinson, A. S. Bracker, and S. M. George, “FTIR studies of water and ammonia decomposition on silicon surfaces,” J. Electron Spectrosc. Relat. Phenom.54-55, 1085–1095 (1990). [CrossRef]
  22. M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from ‘porous silicon’: a new interpretation,” Solid State Commun.81(4), 307–312 (1992). [CrossRef]
  23. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett.76(3), 351–353 (2000). [CrossRef]
  24. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, “Identification of radiative transitions in highly porous silicon,” J. Phys. Condens. Matter5(7), L91–L98 (1993). [CrossRef]
  25. V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys.87(11), 8165–8173 (2000). [CrossRef]
  26. M. Palummo, F. Iori, R. Del Sole, and S. Ossicini, “Giant excitonic exchange splitting in Si nanowires: First-principles calculations,” Phys. Rev. B81(12), 121303 (2010). [CrossRef]
  27. G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys., A Mater. Sci. Process.74(1), 1–5 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited