OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1575–1587

Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics

Selim Elhadj, Manyalibo J. Matthews, Steven T. Yang, and Diane J. Cooke  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1575-1587 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Evaporation kinetics of fused silica were measured up to ≈3000K using CO2 laser heating, while solid-gas phase chemistry of silica was assessed with hydrogen, air, and nitrogen. Enhanced evaporation in hydrogen was attributed to an additional reduction pathway, while oxidizing conditions pushed the reaction backwards. The observed mass transport limitations supported use of a near-equilibrium analysis for interpreting kinetic data. A semi-empirical model of the evaporation kinetics is derived that accounts for heating, gas chemistry and transport properties. The approach described should have application to materials laser processing, and in applications requiring knowledge of thermal decomposition chemistry under extreme temperatures.

© 2012 OSA

OCIS Codes
(000.6850) General : Thermodynamics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica
(350.3390) Other areas of optics : Laser materials processing
(350.3450) Other areas of optics : Laser-induced chemistry
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Laser Materials Processing

Original Manuscript: November 10, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: December 16, 2011
Published: January 10, 2012

Selim Elhadj, Manyalibo J. Matthews, Steven T. Yang, and Diane J. Cooke, "Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics," Opt. Express 20, 1575-1587 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Lee, “Reaction of high-silica optical fibers with hydrofluoric-acid,” J. Am. Ceram. Soc. 67(2), C21–C22 (1984). [CrossRef]
  2. G. Montano-Miranda and A. Muscat, “Etching of silicon dioxide with gas phase HF and water: Initiation, bulk etching, and termination,” in Proceedings of Ultra Clean Processing of Semiconductor Surfaces VIII, P. Mertens, M. Meuris, and M. Heyns, eds. (Trans Tech Publications Ltd, Antwerp, Belgium, 2006), pp. 3–6.
  3. J. F. Bacon, A. A. Hasapis, and J. W. Wholley, “Viscosity and density of molten silica and high silica content glasses,” Phys. Chem. Glasses 1(3), 90–98 (1960).
  4. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970). [CrossRef]
  5. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. 2. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972). [CrossRef]
  6. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002). [CrossRef]
  7. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606–2616 (2010). [CrossRef]
  8. H. L. Schick, “A thermodynamic analysis of the high-temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960). [CrossRef]
  9. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010). [CrossRef]
  10. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006). [CrossRef] [PubMed]
  11. V. K. Sysoev, V. I. Masychev, B. P. Papchenko, S. Y. Rusanov, A. A. Yakovlev, and N. P. Glukhoedov, “High-rate IR laser evaporation of silica glass,” Inorg. Mater. 39(5), 532–537 (2003). [CrossRef]
  12. P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18(25), 26068–26076 (2010). [CrossRef] [PubMed]
  13. L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009). [CrossRef] [PubMed]
  14. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007). [CrossRef]
  15. D. M. Mattox and H. D. Smith, “Hydrogen surface etching of molten silica,” J. Am. Ceram. Soc. 71(8), C392–C394 (1988). [CrossRef]
  16. S. T. Tso and J. A. Pask, “Reaction of fused-silica with hydrogen gas,” J. Am. Ceram. Soc. 65(9), 457–460 (1982). [CrossRef]
  17. K. Schwerdtfeger, “Rate of silica reduction in reducing gases at 1500 Degrees C,” Trans. Metall. Soc. AIME 236(8), 1152–1156 (1966).
  18. R. A. Gardner, “Kinetics of silica reduction in hydrogen,” J. Solid State Chem. 9(4), 336–344 (1974). [CrossRef]
  19. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers - a review,” J. Lightwave Technol. 5(5), 712–733 (1987). [CrossRef]
  20. T. Addona and R. J. Munz, “Silica decomposition using a transferred arc process,” Ind. Eng. Chem. Res. 38(6), 2299–2309 (1999). [CrossRef]
  21. J. F. Shackelford and J. S. Masaryk, “Thermodynamics of water and hydrogen solubility in fused silica,” J. Non-Cryst. Solids 21(1), 55–64 (1976). [CrossRef]
  22. A. de Rudnay, “Evaporation of silica,” Vacuum 1(3), 204–205 (1951). [CrossRef]
  23. L. Pekker, N. Gimelshein, and S. Gimelshein, “Analytical and kinetic modeling of ablation process,” J. Thermophys. Heat Transfer 23(3), 473–478 (2009).
  24. G. Han and H. Y. Sohn, “Kinetics of the hydrogen reduction of silica incorporating the effect of gas-volume change upon reaction,” J. Am. Ceram. Soc. 88(4), 882–888 (2005). [CrossRef]
  25. H. Y. Sohn, “The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy,” Metall. Mater. Trans. B 35(1), 121–131 (2004). [CrossRef]
  26. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009). [CrossRef]
  27. S. Elhadj, S. T. Yang, M. J. Matthews, D. J. Cooke, J. D. Bude, M. Johnson, M. Feit, V. Draggoo, and S. E. Bisson, “High temperature thermographic measurements of laser heated silica,” Proc. SPIE 7504, 750419 (2009). [CrossRef]
  28. S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010). [CrossRef]
  29. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73(2), 199–208 (2001).
  30. T. J. McNeil, R. Cole, and R. S. Subramanian, “Surface-tension-driven flow in a glass melt,” J. Am. Ceram. Soc. 68(5), 254–259 (1985). [CrossRef]
  31. A. Kar and J. Mazumder, “2-Dimensional model for material damage due to melting and vaporization during laser irradiation,” J. Appl. Phys. 68(8), 3884–3891 (1990). [CrossRef]
  32. W. J. Massman, “A review of the molecular diffusivities of H2O, CO2, CH4, CO, O-3, SO2, NH3, N2O, NO, and NO2 in air, O-2 and N-2 near STP,” Atmos. Environ. 32(6), 1111–1127 (1998). [CrossRef]
  33. B. Ozturk and R. J. Fruehan, “The rate of formation of SiO by the reaction of CO or H2 with silica and silicate slags,” Metall. Mater. Trans. B 16(4), 801–806 (1985).
  34. F*A*C*T (Facility for the Analysis of Chemical Thermodynamics) http://www.crct.polymtl.ca/fact/fact.htm .
  35. H. Y. Sohn, “Overall rate analysis of the gaseous reduction of stable oxides incorporating chemical kinetics, mass transfer, and chemical equilibrium,” J. Am. Ceram. Soc. 89(3), 1006–1013 (2006). [CrossRef]
  36. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer 18(11), 1323–1329 (1975). [CrossRef]
  37. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18(9), 1049–1053 (1975). [CrossRef]
  38. CRC Handbook of Chemistry and Physics, 65th ed. (CRC Press, Boca Raton, FL, USA, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited