OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1588–1596

All-optical scanhead for ultrasound and photoacoustic dual-modality imaging

Bao-Yu Hsieh, Sung-Liang Chen, Tao Ling, L. Jay Guo, and Pai-Chi Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1588-1596 (2012)
http://dx.doi.org/10.1364/OE.20.001588


View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new scanhead design for combined ultrasound (US)/photoacoustic (PA) imaging that can be applied to dual-modality microscopy and biomedical imaging. Both imaging modalities employ the optical generation and detection of acoustic waves. The scanhead consists of an optical fiber with an axicon tip for excitation, and a microring for acoustic detection. No conventional piezoelectric device is needed, and the cost of the design makes it suitable for one-time, disposable use. Furthermore, a single laser pulse is employed to generate both US and PA signals. A subband imaging method can be applied to the receiver to enhance the contrast between the US and PA signals. Phantom data demonstrate the feasibility of this approach.

© 2012 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: November 23, 2011
Revised Manuscript: December 28, 2011
Manuscript Accepted: December 28, 2011
Published: January 10, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Bao-Yu Hsieh, Sung-Liang Chen, Tao Ling, L. Jay Guo, and Pai-Chi Li, "All-optical scanhead for ultrasound and photoacoustic dual-modality imaging," Opt. Express 20, 1588-1596 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: a review,” NDT Int.39(7), 525–541 (2006). [CrossRef]
  2. S. J. Song, H. J. Shin, and Y. H. Jang, “Development of an ultrasonic phased array system for nondestructive tests of nuclear power plant components,” Nucl. Eng. Des.214(1–2), 151–161 (2002). [CrossRef]
  3. G. Grégoire, V. Tournat, D. Mounier, and V. E. Gusev, “Nonlinear photothermal and photoacoustic processes for crack detection,” Eur. Phys. J. Spec. Top.153(1), 313–315 (2008). [CrossRef]
  4. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007). [CrossRef] [PubMed]
  5. W. Wei, X. Li, Q. Zhou, K. K. Shung, and Z. Chen, “Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging,” J. Biomed. Opt.16(10), 106001 (2011). [CrossRef] [PubMed]
  6. S. Mallidi, A. B. Karpiouk, S. R. Aglyamov, S. Sethuraman, and S. Y. Emelianov, “Measurement of blood perfusion using photoacoustic, ultrasound, and strain imaging,” Proc. SPIE6437, 643707, 643707-9 (2007). [CrossRef]
  7. K. Homan, J. Shah, S. Gomez, H. Gensler, A. B. Karpiouk, L. Brannon-Peppas, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging of pancreatic cancer using nanocage contrast agents,” Proc. SPIE7177, 71771M, 71771M-6 (2009). [CrossRef]
  8. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010). [CrossRef] [PubMed]
  9. J. Shah, S. Park, S. R. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008). [CrossRef] [PubMed]
  10. S. Kim, Y. S. Chen, G. P. Luke, M. Mehrmohammadi, J. R. Cook, and S. Y. Emelianov, “Ultrasound and photoacoustic image-guided photothermal therapy using silica-coated gold nanorods: in-vivo study,” Proc. of IEEE IUS, 233–236 (2010).
  11. J. M. Cannata, J. A. Williams, T. A. Qifa Zhou, Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(1), 224–236 (2006). [CrossRef] [PubMed]
  12. T. Buma, M. Spisar, and M. O’Donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett.79(4), 548–550 (2001). [CrossRef]
  13. Y. Hou, J. S. Kim, S. Ashkenazi, M. O’Donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett.89(9), 093901 (2006). [CrossRef]
  14. Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett.91(7), 073507 (2007). [CrossRef]
  15. K. Passler, R. Nuster, S. Gratt, P. Burgholzer, and G. Paltauf, “Laser-generation of ultrasonic X-waves using axicon transducers,” Appl. Phys. Lett.94(6), 064108 (2009). [CrossRef]
  16. S. Resink, J. Jose, R. G. H. Willemink, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Multiple passive element enriched photoacoustic computed tomography,” Opt. Lett.36(15), 2809–2811 (2011). [CrossRef] [PubMed]
  17. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control47(1), 160–169 (2000). [CrossRef] [PubMed]
  18. P. C. Beard and T. N. Mills, “A 2D optical ultrasound array using a polymer film sensing interferometer,” Proc. of IEEE IUS, 1183–1186 (2000).
  19. E. Zhang, J. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008). [CrossRef] [PubMed]
  20. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors10(12), 11248–11258 (2010). [CrossRef] [PubMed]
  21. V. Wilkens, “Characterization of an optical multilayer hydrophone with constant frequency response in the range from 1 to 75 MHz,” J. Acoust. Soc. Am.113(3), 1431–1438 (2003). [CrossRef] [PubMed]
  22. R. Nuster, M. Holotta, C. Kremser, H. Grossauer, P. Burgholzer, and G. Paltauf, “Photoacoustic microtomography using optical interferometric detection,” J. Biomed. Opt.15(2), 021307 (2010). [CrossRef] [PubMed]
  23. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 957–965 (2007). [CrossRef] [PubMed]
  24. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008). [CrossRef] [PubMed]
  25. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express16(25), 20215–20226 (2008). [CrossRef] [PubMed]
  26. M. Xu, Y. Xu, and L. V. Wang, “Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries,” IEEE Trans. Biomed. Eng.50(9), 1086–1099 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited