OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1662–1667

Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air

Gombojav O. Ariunbold, Pavel Polynkin, and Jerome V. Moloney  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1662-1667 (2012)
http://dx.doi.org/10.1364/OE.20.001662


View Full Text Article

Enhanced HTML    Acrobat PDF (838 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experiments on the generation of third and fifth harmonics of millijoule-level, tightly focused, femtosecond laser pulses at 2.2 μm wavelength in air. The measured ratio of yields of the third and fifth harmonics in our setup is found equal to 2 · 10−4. This result contradicts the recent suggestion that the Kerr effect in air saturates and changes sign in ultra-intense optical fields.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.3270) Nonlinear optics : Kerr effect
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 12, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: November 30, 2011
Published: January 11, 2012

Citation
Gombojav O. Ariunbold, Pavel Polynkin, and Jerome V. Moloney, "Third and fifth harmonic generation by tightly focused femtosecond pulses at 2.2 μm wavelength in air," Opt. Express 20, 1662-1667 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1662


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17, 13429–13434 (2009). [CrossRef] [PubMed]
  2. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18, 3011–3012 (2010). [CrossRef]
  3. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007). [CrossRef]
  4. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys.70, 1633–1713 (2007). [CrossRef]
  5. S. L. Chin, Femtosecond Laser Filamentation (Springer, New York, 2010). [CrossRef]
  6. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-Order Kerr Terms Allow Ionization-Free Filamentation in Gases,” Phys. Rev. Lett.104, 103903 (2010). [CrossRef] [PubMed]
  7. N. Aközbek, M. Scalora, C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001). [CrossRef]
  8. A. Couairon, “Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses,” Phys. Rev. A68, 015801 (2003). [CrossRef]
  9. A. Vinco̧tte and L. Bergé, “χ(5) susceptibility stabilizes the propagation of ultrashort laser pulses in air,”Phys. Rev. A70, 061802(R) (2004). [CrossRef]
  10. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunneling ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163, 29–32 (1999). [CrossRef]
  11. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. M. Bowden, and S. L. Chin, “Intensity clamping and refocusing of intense femtosecond laser pulses in nitrogen gas,” Appl. Phys. B73, 287–290 (2001).
  12. P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, “Experimental tests of the new paradigm for laser filamentation in gases,” Phys. Rev. Lett.106, 153902 (2011). [CrossRef] [PubMed]
  13. O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. L. Chin, “Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?” Opt. Lett.36, 1035–1037 (2011). [CrossRef] [PubMed]
  14. Y.-H. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys. Rev. Lett.105, 215005 (2010). [CrossRef]
  15. P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and O. Faucher, “Transition from plasma-driven to Kerr-driven laser filamentation,” Phys. Rev. Lett.106, 243902 (2011). [CrossRef] [PubMed]
  16. A. Teleki, E. Wright, and M. Kolesik, “Microscopic model for the higher-order nonlinearity in optical filaments,” Phys. Rev. A82, 065801 (2010). [CrossRef]
  17. C. Bree, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011).
  18. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, “Nonlinear polarization response of a gaseous atomic medium in the field of an ultraintense femtosecond laser pulse,” J. Ex. Theor. Phys. Lett.94, 559–564 (2011) (in Russian, English translation in press).
  19. J. K. Wahlstrand, Y.-H. Cheng, Y.-H. Chen, and H. M. Milchberg, “Optical nonlinearity in Ar and N2 near the ionization threshold,” Phys. Rev. Lett.107, 103901 (2011). [CrossRef] [PubMed]
  20. J. K. Wahlstrand and H. M. Milchberg, “Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases,” Opt. Lett.36, 3822–3824 (2011). [CrossRef] [PubMed]
  21. M. Kolesik, E. M. Wright, and J. V. Moloney, “Femtosecond filamentation in air and higher-order nonlinearities,” Opt. Lett.35, 2550–2552 (2010). [CrossRef] [PubMed]
  22. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulas,” Opt. Express18, 6613–6620 (2010). [CrossRef] [PubMed]
  23. V. Mizrahi and D. P. Chelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared,” Phys. Rev. Lett.55, 696–699 (1985). [CrossRef] [PubMed]
  24. B. Shim, S. E. Schrauth, and A. L. Gaeta, “Filamentation in air with ultrashort mid-infrared pulses,” Opt. Express19, 9118–9126 (2011). [CrossRef] [PubMed]
  25. W. Ettoumi, P. Béjot, Y. Petit, V. Loriot, O. Faucher, B. Lavorel, J. Kasparian, and J.-P. Wolf, “Spectral dependence of purely-Kerr-driven filamentation in air and argon,” Phys. Rev. A82, 033826 (2010). [CrossRef]
  26. K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fus, “Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:Sapphire laser,” Opt. Lett.33, 723–725 (2008). [CrossRef] [PubMed]
  27. P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “From higher-order Kerr nonlinearities to quantitative modeling of third and fifth harmonic generation in argon,” Opt. Lett.36, 828–830 (2011). [CrossRef] [PubMed]
  28. P. Tzankov, M. Roth, Y. Kong, L. Xu, and Z. Sartania, “Spatio-Temporal Characterization of the Signal Pulse-Shortening in Type II Optical Parametric Amplifier Using BBO and BIBO crystals,” in Proceedings of the Conference on Lasers and Electro Optics (2008), paper CTuE3. [CrossRef]
  29. Data for refractive index of air, corrected for humidity and ambient temperature, is available at the NIST website at http://emtoolbox.nist.gov/Wavelength/Elden.asp , for the wavelength range between 300 nm and 1.7 μm. The value for the index at 2.2 μm wavelength that we used in the paper was evaluated by extrapolating the available data using an 8th-order rational function fit.
  30. J. H. Taylor and H. W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am.47, 223–226 (1957). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited