OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1685–1690

Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation

Lin Zhang, Qiang Lin, Yang Yue, Yan Yan, Raymond G. Beausoleil, and Alan E. Willner  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1685-1690 (2012)
http://dx.doi.org/10.1364/OE.20.001685


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel silicon waveguide that exhibits four zero-dispersion wavelengths for the first time, to the best of our knowledge, with a flattened dispersion over a 670-nm bandwidth. This holds a great potential for exploration of new nonlinear effects and achievement of ultra-broadband signal processing on a silicon chip. As an example, we show that an octave-spanning supercontinuum assisted by dispersive wave generation can be obtained in silicon, over a wavelength range from 1217 to 2451 nm, almost from bandgap wavelength to half-bandgap wavelength. Input pulse is greatly compressed to 10 fs.

© 2012 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Integrated Optics

History
Original Manuscript: November 3, 2011
Revised Manuscript: December 25, 2011
Manuscript Accepted: December 25, 2011
Published: January 11, 2012

Citation
Lin Zhang, Qiang Lin, Yang Yue, Yan Yan, Raymond G. Beausoleil, and Alan E. Willner, "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation," Opt. Express 20, 1685-1690 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  2. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett.25(11), 790–792 (2000). [CrossRef] [PubMed]
  3. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express13(10), 3728–3736 (2005). [CrossRef] [PubMed]
  4. D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun.282(20), 4072–4076 (2009).
  5. H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. A, Pure Appl. Opt.13(5), 055405 (2011).
  6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature424(6948), 511–515 (2003). [CrossRef] [PubMed]
  7. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express12(10), 2027–2032 (2004). [CrossRef] [PubMed]
  8. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express13(16), 6181–6192 (2005).
  9. W.-Q. Zhang, S. Afshar V, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express17(21), 19311–19327 (2009). [CrossRef] [PubMed]
  10. S. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83(2), 023808 (2011). [CrossRef]
  11. J. I. Dadap, N. C. Panoiu, X. Chen, I.-W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express16(2), 1280–1299 (2008). [CrossRef] [PubMed]
  12. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  13. X. Chen, N. C. Panoiu, and R. M. Osgood., “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron.42(2), 160–170 (2006). [CrossRef]
  14. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  15. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141 (2011).
  16. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express15(15), 9458–9463 (2007). [CrossRef] [PubMed]
  17. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett.33(24), 2889–2891 (2008). [CrossRef] [PubMed]
  18. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Opt. Express18(12), 13187–13193 (2010). [CrossRef] [PubMed]
  19. S. Mas, J. Caraquitena, J. V. Galán, P. Sanchis, and J. Martí, “Tailoring the dispersion behavior of silicon nanophotonic slot waveguides,” Opt. Express18(20), 20839–20844 (2010). [CrossRef] [PubMed]
  20. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express18(19), 20529–20534 (2010). [CrossRef] [PubMed]
  21. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  22. L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express19(12), 11584–11590 (2011). [CrossRef] [PubMed]
  23. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Octave-spanning supercontinuum generation in CMOS-compatible silicon nitride waveguides,” in CLEO - Laser Applications to Photonic Applications 2011, paper PDPA6 (2011).
  24. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express12(17), 4094–4102 (2004). [CrossRef] [PubMed]
  25. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett.32(4), 391–393 (2007). [CrossRef] [PubMed]
  26. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express15(23), 15242–15249 (2007). [CrossRef] [PubMed]
  27. B. Kuyken, X. Liu, R. M. Osgood, Y. A. Vlasov, R. Baets, G. Roelkens, and W. M. Green, “Generation of a telecom-to-mid-infrared spanning supercontinuum using silicon-on-insulator wire waveguides,” in CLEO - Laser Applications to Photonic Applications 2011, paper CTuS1 (2011).
  28. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  29. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82(2), 1287–1299 (2010). [CrossRef]
  30. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008). [CrossRef]
  31. Q. Lin, “Generalized nonlinear envelope equation with high-order dispersion of nonlinearity” (to be published).
  32. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express15(9), 5382–5387 (2007). [CrossRef] [PubMed]
  33. R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express15(26), 17967–17972 (2007). [CrossRef] [PubMed]
  34. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  35. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near-infrared region,” Appl. Phys. Lett.91(2), 021111 (2007). [CrossRef]
  36. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express17(4), 2298–2318 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited