OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1706–1713

Planar, flattened Luneburg lens at infrared wavelengths

John Hunt, Talmage Tyler, Sulochana Dhar, Yu-Ju Tsai, Patrick Bowen, Stéphane Larouche, Nan M. Jokerst, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1706-1713 (2012)
http://dx.doi.org/10.1364/OE.20.001706


View Full Text Article

Enhanced HTML    Acrobat PDF (1721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Employing artificially structured metamaterials provides a means of circumventing the limits of conventional optical materials. Here, we use transformation optics (TO) combined with nanolithography to produce a planar Luneburg lens with a flat focal surface that operates at telecommunication wavelengths. Whereas previous infrared TO devices have been transformations of free-space, here we implement a transformation of an existing optical element to create a new device with the same optical characteristics but a user-defined geometry.

© 2012 OSA

OCIS Codes
(080.3620) Geometric optics : Lens system design
(080.3630) Geometric optics : Lenses
(220.4610) Optical design and fabrication : Optical fabrication
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: November 22, 2011
Revised Manuscript: December 29, 2011
Manuscript Accepted: December 30, 2011
Published: January 11, 2012

Citation
John Hunt, Talmage Tyler, Sulochana Dhar, Yu-Ju Tsai, Patrick Bowen, Stéphane Larouche, Nan M. Jokerst, and David R. Smith, "Planar, flattened Luneburg lens at infrared wavelengths," Opt. Express 20, 1706-1713 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1706


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. W. Marchland, Gradient Index Optics (Academic Press, 1978).
  2. R. Luneburg, Mathematical Theory of Optics (Brown Univ. Press, 1944).
  3. S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys.29(9), 1358–1368 (1958). [CrossRef]
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  6. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A carpet cloak for visible light,” Nano Lett.11(7), 2825–2828 (2011). [CrossRef] [PubMed]
  7. L. Gabrielli and M. Lipson, “Transformation optics on a silicon platform,” J. Opt.13(2), 024010 (2011). [CrossRef]
  8. A. Di Falco, S. C. Kehr, and U. Leonhardt, “Luneburg lens in silicon photonics,” Opt. Express19(6), 5156–5162 (2011). [CrossRef] [PubMed]
  9. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  10. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express17(19), 16535–16542 (2009). [CrossRef] [PubMed]
  11. D. Schurig, “An aberration-free lens with zero f-number,” New J. Phys.10(11), 115034 (2008). [CrossRef]
  12. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  13. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express17(17), 14872–14879 (2009). [CrossRef] [PubMed]
  14. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett.105(19), 193902 (2010). [CrossRef] [PubMed]
  15. D. R. Smith, Y. Urzhumov, N. B. Kundtz, and N. I. Landy, “Enhancing imaging systems using transformation optics,” Opt. Express18(20), 21238–21251 (2010). [CrossRef] [PubMed]
  16. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9(2), 129–132 (2010). [CrossRef] [PubMed]
  17. J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel, Switzerland)11(8), 7982–7991 (2011). [CrossRef] [PubMed]
  18. A. Subashiev and S. Luryi, “Modal control in semiconductor optical waveguides with uniaxially patterned layers,” J. Lightwave Technol.24(3), 1513–1522 (2006). [CrossRef]
  19. N. Grigoropoulos and P. Young, “Low cost non radiative perforated dielectric waveguides,” in Proceedings of 33rd European Microwave Conference (2003), 439–442.
  20. J. Hunt, N. Kundtz, N. Landy, and D. R. Smith, “Relaxation approach for the generation of inhomogeneous distributions of uniformly sized particles,” Appl. Phys. Lett.97(2), 024104 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited