OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1727–1732

In situ gas sensing using a remotely detectable probe with replaceable insert

Sun Do Lim, Kyungsik Ma, Ji Ho Jeong, Gilhwan Kim, Kwanil Lee, Je-Myung Jeong, and Sang Bae Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1727-1732 (2012)
http://dx.doi.org/10.1364/OE.20.001727


View Full Text Article

Enhanced HTML    Acrobat PDF (2964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a spectroscopic gas sensor using an optical fiber probe with a replaceable insert. The probe consists of a hollow-core photonic bandgap fiber (HC-PBGF) with a core diameter of 10.9 μm and a glass tube where a 2-μm hollow core fiber (HCF) with a gold coated end facet can be inserted. The HCF is designed to function as both a gate where gases can enter the HC-PBGF and a mirror reflecting the guided light back to the HC-PBGF. The opposite distal end of the probe is also designed to be able to regulate the gas pressure within the HC-PBGF for a high gas flow rate, while still transmitting the reflected light to the analysis instrument. The remote sensing probe, we believe, has much potential for detecting gases in hazardous environments.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: November 22, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: December 29, 2011
Published: January 11, 2012

Citation
Sun Do Lim, Kyungsik Ma, Ji Ho Jeong, Gilhwan Kim, Kwanil Lee, Je-Myung Jeong, and Sang Bae Lee, "In situ gas sensing using a remotely detectable probe with replaceable insert," Opt. Express 20, 1727-1732 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B Chem.105(2), 183–186 (2005). [CrossRef]
  2. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]
  4. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express13(26), 10475–10482 (2005). [CrossRef] [PubMed]
  5. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express13(15), 5694–5703 (2005). [CrossRef] [PubMed]
  6. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express15(11), 6690–6695 (2007). [CrossRef] [PubMed]
  7. R. M. Wynne, B. Barabadi, K. J. Creedon, and A. Ortega, “Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor,” J. Lightwave Technol.27(11), 1590–1596 (2009). [CrossRef]
  8. Y. L. Hoo, S. Liu, H. L. Ho, and W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett.22(5), 296–298 (2010). [CrossRef]
  9. X. Li, J. Pawlat, J. Liang, and T. Ueda, “Measurement of low gas concentrations using photonic bandgap fiber cell,” IEEE Sens. J.10(6), 1156–1161 (2010). [CrossRef]
  10. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol.22(1), 11–15 (2004). [CrossRef]
  11. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, “Material effects in air-guiding photonic bandgap fibers,” J. Opt. Soc. Am. B20(10), 2046–2051 (2003). [CrossRef]
  12. G. Humbert, J. C. Knight, G. Bouwmans, P. S. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express12(8), 1477–1484 (2004). [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Photonic crystals as optical fibres - physics and applications,” Opt. Mater.11(2-3), 143–151 (1999). [CrossRef]
  14. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers - fundamentals and applications,” J. Am. Ceram. Soc.89(1), 2–12 (2006). [CrossRef]
  15. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B17(7), 1263–1270 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited