OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1775–1782

Dissemination of an optical frequency comb over fiber with 3 × 10−18 fractional accuracy

Giuseppe Marra, Helen S. Margolis, and David J. Richardson  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1775-1782 (2012)
http://dx.doi.org/10.1364/OE.20.001775


View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that the structure of an optical frequency comb transferred over several km of fiber can be preserved at a level compatible with the best optical frequency references currently available. Using an optical phase detection technique we measure the noise introduced by the fiber link and suppress it by stabilizing the optical path length. The measured fractional frequency stability of the transferred optical modes is 2 × 10−18 at a few thousand seconds and the mode spacing stability after optical-microwave conversion is better than 4 × 10−17 over the same time scale.

© 2011 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 25, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 10, 2011
Published: January 11, 2012

Citation
Giuseppe Marra, Helen S. Margolis, and David J. Richardson, "Dissemination of an optical frequency comb over fiber with 3 × 10−18 fractional accuracy," Opt. Express 20, 1775-1782 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1775


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science311, 1595–1599 (2006). [CrossRef] [PubMed]
  2. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2007). [CrossRef] [PubMed]
  3. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nature Photon.3, 99–102 (2009). [CrossRef]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009). [CrossRef]
  5. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature452, 610–612 (2008). [CrossRef] [PubMed]
  6. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008). [CrossRef] [PubMed]
  7. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319, 1808–1812 (2008). [CrossRef] [PubMed]
  8. “STE-QUEST, Space-Time Explorer and QUantum Equivalence Principle Space Test,” http://sci.esa.int/ste-quest .
  9. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104, 070802 (2010). [CrossRef] [PubMed]
  10. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science303, 1843–1845 (2004). [CrossRef] [PubMed]
  11. G. Grosche, K. Predehl, S. M. F. Raupach, H. Schnatz, O. Terra, S. Droste, and R. Holzwarth “High performance frequency comparisons over optical fibre,” IQEC/CLEO Pacific Rim 2011, Technical Digest CD-ROM (Sydney, Australia, 2011)
  12. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98, 723–727 (2010). [CrossRef]
  13. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy,” Opt. Lett.34, 2270–2272 (2009). [CrossRef] [PubMed]
  14. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25, 2029–2035 (2008). [CrossRef]
  15. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B25, 1284–1293 (2008). [CrossRef]
  16. M. Musha, F.-L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express16, 16459–16466 (2008). [CrossRef] [PubMed]
  17. F. Kéfélian, O. Lopez, H. Jiang, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34, 1573–1575 (2009). [CrossRef] [PubMed]
  18. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum.78, 021101 (2007). [CrossRef] [PubMed]
  19. K. W. Holman, D. D. Hudson, J. Ye, and D. J. Jones, “Remote transfer of a high-stability and ultralow-jitter timing signal,” Opt. Lett.30, 1225–1227 (2005). [CrossRef] [PubMed]
  20. G. Marra, R. Slavík, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, “High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser,” Opt. Lett.36, 511–513 (2011). [CrossRef] [PubMed]
  21. C.-W. Kang, T.-A. Liu, R.-H. Shu, C.-L. Pan, and J.-L. Peng, “Simultaneously transfer microwave and optical frequency through fiber using mode-locked fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest, (Optical Society of America, 2009), p. JWA70.
  22. Y.-F. Chen, J. Jiang, and D. J. Jones, “Remote distribution of a mode-locked pulse train with sub 40-as jitter,” Opt. Express14, 12134–12144 (2006). [CrossRef] [PubMed]
  23. E. Ivanov, S. Diddams, and L. Hollberg, “Study of the excess noise associated with demodulation of ultra-short infrared pulses,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control52, 1068–1074 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited