OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1839–1848

Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1839-1848 (2012)
http://dx.doi.org/10.1364/OE.20.001839


View Full Text Article

Enhanced HTML    Acrobat PDF (2485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A waveguide optical isolator realized by adhesive bonding of a garnet die, containing a Ce:YIG magneto-optic layer, on a silicon-on-insulator waveguide circuit is demonstrated. The die was bonded on top of an asymmetric Mach-Zehnder interferometer using a 100nm thick DVS-BCB adhesive bonding layer. A static magnetic field applied perpendicular to the light propagation direction results in a non-reciprocal phase shift for the fundamental quasi-TM mode in the hybrid waveguide geometry. A maximum optical isolation of 25 dB is obtained.

© 2012 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3240) Optical devices : Isolators

ToC Category:
Optical Devices

History
Original Manuscript: November 10, 2011
Revised Manuscript: January 6, 2012
Manuscript Accepted: January 8, 2012
Published: January 12, 2012

Citation
S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, and R. Baets, "Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding," Opt. Express 20, 1839-1848 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. E. Stubkjaer and M. B. Small, “Noise properties of semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron.20(5), 472–478 (1984). [CrossRef]
  2. O. Hirota and Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron.15(3), 142–149 (1979). [CrossRef]
  3. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 µm distributed feedback lasers,” J. Lightwave Technol.4(11), 1655–1661 (1986). [CrossRef]
  4. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9203 . [CrossRef] [PubMed]
  5. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  6. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-10-9221 . [CrossRef] [PubMed]
  7. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs–silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–2232 (2007). [CrossRef]
  8. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express14(18), 8154–8159 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8154 . [CrossRef] [PubMed]
  9. H. Yokoi, T. Mizumoto, and Y. Shoji, “Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding,” Appl. Opt.42(33), 6605–6612 (2003). [CrossRef] [PubMed]
  10. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett.92(7), 071117 (2008). [CrossRef]
  11. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19(12), 11740–11745 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-12-11740 . [CrossRef] [PubMed]
  12. S. Y. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett.87(12), 121111 (2005). [CrossRef]
  13. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26(2), 291–301 (2008). [CrossRef]
  14. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optic Materials (Institute of Physics Publishing, 1997).
  15. K. Postava, M. Vanwolleghem, D. Van Thourhout, R. Baets, S. Visnovsky, P. Beauvillain, and J. Pistora, “Modeling of a novel InP-based monolithically integrated magneto-optical waveguide isolator,” J. Opt. Soc. Am. B22(1), 261–273 (2005). [CrossRef]
  16. F. Auracher and H. H. Witte, “A new design for an integrated optical isolator,” Opt. Commun.13(4), 435–438 (1975). [CrossRef]
  17. T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol.4(3), 347–352 (1986). [CrossRef]
  18. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett.76(16), 2158–2160 (2000). [CrossRef]
  19. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B22(1), 240–253 (2005). [CrossRef]
  20. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt.39(33), 6158–6164 (2000). [CrossRef] [PubMed]
  21. D. Vermeulen, K. Van Acoleyen, S. Ghosh, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout and R. Baets, “Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides,” ECIO, United Kingdom, p.paper WeP16.
  22. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Adhesive bonding of Inp/INGAASP dies to processed Silicon-On-Insulator wafers using DVS-Bis-Benzocyclobutene,” J. Electrochem. Soc.153(12), G1015–G1019 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited