OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1849–1855

Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping

Peng Wang and Rajesh Menon  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 1849-1855 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light-trapping is essential to improve the performance of thin-film solar cells. In this paper, we perform a parametric optimization of 1-D square and sinusoidal grating structures that act as nanophotonic scatterers to increase light absorption in ultra-thin (10nm) solar cells. Our optimization reveals that the short-circuit current density in a device of active-layer thickness 10nm can be improved by a factor of ~5 in the presence of the scattering structure. More complex geometries allow for increased degrees of design freedom and potentially high enhancement of light absorption.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6188) Thin films : Spectral properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: November 11, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: December 29, 2011
Published: January 12, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Peng Wang and Rajesh Menon, "Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping," Opt. Express 20, 1849-1855 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  3. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984). [CrossRef]
  4. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  5. R. Dewan and D. Knipp, “Light-trapping in thin-film silicon solar cells with integrated diffractive grating,” J. Appl. Phys.106(7), 074901 (2009). [CrossRef]
  6. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  7. P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987). [CrossRef]
  8. M. A. Green, J. H. Zhao, A. H. Wang, and S. R. Wenham, “Very high efficiency silicon solar cells – science and technology,” IEEE Trans. Electron. Dev.46(10), 1940–1947 (1999). [CrossRef]
  9. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  10. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011). [CrossRef]
  11. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  12. L. L. Yang, Y. M. Xuan, and J. J. Tan, “Efficient optical absorption in thin-film solar cells,” Opt. Express19(S5), A1165–A1174 (2011). [CrossRef] [PubMed]
  13. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010). [CrossRef] [PubMed]
  14. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006). [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  16. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18(S2), A139–A146 (2010). [CrossRef] [PubMed]
  17. E. Garnett and P. D. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  18. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  19. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  20. S. H. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002). [CrossRef]
  21. S. B. Mallick, N. P. Sergeant, M. Agrawal, J.-Y. Lee, and P. Peumans, “Coherent light trapping in thin-film photovoltaics,” MRS Bull.36(06), 453–460 (2011). [CrossRef]
  22. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3), A366–A380 (2010). [CrossRef] [PubMed]
  23. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  24. J. R. Nagel, S. Blair, and M. A. Scarpulla, “Exact field solution to guided wave propagation in lossy thin films,” Opt. Express19(21), 20159–20171 (2011). [CrossRef] [PubMed]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bremel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  26. MEEP is a free FDTD simulation software package developed at MIT to model electromagnetic systems: http://ab-initio.mit.edu/wiki/index.php/Meep .
  27. Refractive index database. http://refractiveindex.info/ .
  28. American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  29. J. Lu, S. Boyd, and J. Vučković, “Inverse design of a three-dimensional nanophotonic resonator,” Opt. Express19(11), 10563–10570 (2011). [CrossRef] [PubMed]
  30. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008). [CrossRef]
  31. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann, and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovolt. Res. Appl.12(23), 93–111 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited