OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 1868–1877

Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating

Nadia Mattiucci, Giuseppe D’Aguanno, Henry O. Everitt, John V. Foreman, John M. Callahan, Milan C. Buncick, and Mark J. Bloemer  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 1868-1877 (2012)
http://dx.doi.org/10.1364/OE.20.001868


View Full Text Article

Enhanced HTML    Acrobat PDF (3103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface-enhanced Raman Scattering (SERS) is studied in sub-wavelength metallic gratings on a substrate using a rigorous electromagnetic approach. In the ultraviolet SERS is limited by the metallic dampening, yet enhancements as large as 105 are predicted. It is shown that these enhancements are directly linked to the spectral position of the plasmonic band edge of the metal/substrate surface plasmon. A simple methodology is presented for selecting the grating pitch to produce optimal enhancement for a given laser frequency.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.7190) Physical optics : Ultraviolet
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 21, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: December 30, 2011
Published: January 12, 2012

Citation
Nadia Mattiucci, Giuseppe D’Aguanno, Henry O. Everitt, John V. Foreman, John M. Callahan, Milan C. Buncick, and Mark J. Bloemer, "Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating," Opt. Express 20, 1868-1877 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-1868


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem.84(1), 1–20 (1977). [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc.99(15), 5215–5217 (1977). [CrossRef]
  4. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface enhanced Raman scattering (Springer, 2006).
  5. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  6. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Mat.4(5), 1143–1212 (1992). [CrossRef]
  7. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000). [CrossRef]
  8. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter46(5), 2821–2830 (1992). [CrossRef] [PubMed]
  9. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.77(6), 1163–1166 (1996). [CrossRef] [PubMed]
  10. D. L. Mills, Nonlinear optics (Springer-Verlag, 1998).
  11. E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta606(2), 119–134 (2008). [CrossRef] [PubMed]
  12. S. A. Asher, “UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry,” Annu. Rev. Phys. Chem.39(1), 537–588 (1988). [CrossRef] [PubMed]
  13. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009). [CrossRef]
  14. T. Dörfer, M. Schmitt, and J. Popp, “Deep UV surface enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007). [CrossRef]
  15. X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta A Mol. Biomol. Spectrosc.67(1), 122–124 (2007). [CrossRef] [PubMed]
  16. Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.)47(13), 3909–3911 (2011). [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of optical constants of solids (Academic Press Inc., 1991).
  18. H. Raether, Surface plasmons (Springer Tracts in Modern Physics- Berlin, 1988).
  19. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A13(9), 1870 (1996). [CrossRef]
  20. G. D. Aguanno, N. Mattiucci, M. J Bloemer, D. deCeglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B28, 253 (2011).
  21. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon, 1960).
  22. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  23. C. Kittel, Quantum theory of solids (Wiley, 1963).
  24. Note that the Raman enhancement calculated as the fourth power of the absolute value of the electric field of the pump is just a first order approximation. A more accurate calculation should take into account of the enhancement at the pump frequency ωL and the enhancement at the emitted frequency ωS as Raman-enhancement=〈|E(r→,ωL)/E0|2|E(r→,ωS)/E0|2〉slit. See for example Ref. 4. For more details the reader can consult Ref. 6 and also:S. Franzen, “Intrinsic limitations of the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering,” J. Phys. Chem. C113, 5912 (2009).
  25. A. Yariv and P. Yeh, Optical waves in crystals (John Wiley, 1984).
  26. R. K. Hart, “The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres,” Proc. R. Soc. London, Ser. A236, 68 (1956).
  27. H. P. Godard, “Oxide Film Growth over Five Years on Some Aluminum Sheet Alloys in Air of Varying Humidity at Room Temperature,” J. Electrochem. Soc.114(4), 354 (1967). [CrossRef]
  28. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss.132, 9–26 (2006). [CrossRef] [PubMed]
  29. P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc.131(34), 12032–12033 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited