OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 741–753

Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region

Menghua Wang, Wei Shi, and Lide Jiang  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 741-753 (2012)
http://dx.doi.org/10.1364/OE.20.000741


View Full Text Article

Enhanced HTML    Acrobat PDF (1778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A regional near-infrared (NIR) ocean normalized water-leaving radiance (nLw(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nLw(λ) and diffuse attenuation coefficient at 490 nm (Kd(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

© 2012 OSA

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 3, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 16, 2011
Published: January 3, 2012

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Menghua Wang, Wei Shi, and Lide Jiang, "Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region," Opt. Express 20, 741-753 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt.33(3), 443–452 (1994). [CrossRef] [PubMed]
  2. IOCCG, “Atmospheric Correction for Remotely-Sensed Ocean-Colour Products,” M. Wang (Ed.), Reports of International Ocean-Colour Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  3. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res.103(C11), 24937–24953 (1998). [CrossRef]
  4. J. L. Mueller, “SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 11, NASA Tech. Memo. 2000−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 24−27 (2000).
  5. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ.111(1), 69–88 (2007). [CrossRef]
  6. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res.114(C10), C10011 (2009), doi:. [CrossRef]
  7. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt.27(5), 862–871 (1988). [CrossRef] [PubMed]
  8. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt.31(21), 4247–4260 (1992). [CrossRef] [PubMed]
  9. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens.23(13), 2693–2702 (2002). [CrossRef]
  10. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens.26(24), 5651–5663 (2005). [CrossRef]
  11. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ.67(3), 348–359 (1999). [CrossRef]
  12. M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt.45(35), 8951–8963 (2006). [CrossRef] [PubMed]
  13. A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr.24(7), 1652–1665 (1994). [CrossRef]
  14. Y. Wu, C. Tang, S. Sathyendranath, and T. Platt, “The impact of bio-optical heating on the properties of the upper ocean: A sensitivity study using a 3-D circulation model for the Labrador Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr.54(23-26), 2630–2642 (2007). [CrossRef]
  15. S. Sathyendranath, T. Platt, C. M. Caverhill, R. Warnock, and M. Lewis, “Remote sensing of oceanic primary production: Computations using a spectral model,” Deep-Sea Res.36(3), 431–453 (1989). [CrossRef]
  16. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  17. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res.102(D14), 17081–17106 (1997). [CrossRef]
  18. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ.102(1-2), 12–23 (2006). [CrossRef]
  19. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci.1(1), 19–42 (2009). [CrossRef] [PubMed]
  20. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett.32(13), L13606 (2005), doi:. [CrossRef]
  21. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res.25(4), 539–555 (2005). [CrossRef]
  22. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt.39(21), 3582–3591 (2000). [CrossRef] [PubMed]
  23. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt.39(6), 897–912 (2000). [CrossRef] [PubMed]
  24. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” SeaWiFS Postlaunch Tech. Rep. Ser., vol. 22, NASA Tech. Memo. 2003−206892, S. B. Hooker and E. R. Firestone, eds., NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 51−59 (2003).
  25. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express18(7), 7521–7527 (2010). [CrossRef] [PubMed]
  26. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt.46(9), 1535–1547 (2007). [CrossRef] [PubMed]
  27. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express15(24), 15722–15733 (2007). [CrossRef] [PubMed]
  28. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009). [CrossRef]
  29. M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett.34(6), L06611 (2007), doi:. [CrossRef]
  30. M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ.115(3), 841–854 (2011), doi:. [CrossRef]
  31. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt.12(3), 555–563 (1973). [CrossRef] [PubMed]
  32. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ.113(8), 1587–1597 (2009). [CrossRef]
  33. W. Shi and M. Wang, “Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations,” J. Geophys. Res.115(C11), C11022 (2010), doi:. [CrossRef]
  34. W. Shi and M. Wang, “Satellite observations of the seasonal sediment plume in central East China Sea,” J. Mar. Syst.82(4), 280–285 (2010), doi:. [CrossRef]
  35. M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010). [CrossRef]
  36. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res.93(D9), 10909–10924 (1988). [CrossRef]
  37. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res.110(D10), D10S06 (2005), doi:. [CrossRef]
  38. M. Wang and W. Shi, “Satellite observed algae blooms in China's Lake Taihu,” Eos Trans. AGU89(22), 201–202 (2008), doi:. [CrossRef]
  39. W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ.115(8), 1926–1934 (2011), doi:. [CrossRef]
  40. S. Son, M. Wang, and J. Shon, “Satellite observations of optical and biological properties in the Korean dump site of the Yellow Sea,” Remote Sens. Environ.115(2), 562–572 (2011), doi:. [CrossRef]
  41. S. Son and M. Wang, “Environmental responses to a land reclamation project in South Korea,” Eos Trans. AGU90(44), 398–399 (2009). [CrossRef]
  42. W. Shi, M. Wang, and L. Jiang, “Spring-neap tidal effects on satellite ocean color observations in the Bohai Sea, Yellow Sea, and East China Sea,” J. Geophys. Res.116, C12932 (2011), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited