OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 776–786

Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 776-786 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that highly nonlinear chalcogenide glass nanowire waveguides with near-zero anomalous dispersion should be capable of generating correlated photon-pairs by spontaneous four-wave mixing at frequencies detuned by over 17 THz from the pump where Raman noise is absent. In this region we predict a photon pair correlation of >100, a figure of merit >10 and brightness of ~8×108 pairs/s over a bandwidth of >15 THz in nanowires with group velocity dispersion of <5 ps∙km−1nm−1. We present designs for double-clad Ge11.5As24Se64.5 glass nanowires with realistic tolerance to fabrication errors that achieve near-zero anomalous dispersion at a 1420 nm pump wavelength. This structure has a fabrication tolerance of 80–170 nm in the waveguide width and utilizes a SiO2/Al2O3 layer deposited by atomic layer deposition to compensate the fabrication errors in the film thickness.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.4180) Quantum optics : Multiphoton processes
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Nonlinear Optics

Original Manuscript: September 19, 2011
Revised Manuscript: November 21, 2011
Manuscript Accepted: November 23, 2011
Published: January 3, 2012

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies, "Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis," Opt. Express 20, 776-786 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett.91(3), 037903 (2003). [CrossRef] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics3(6), 346–350 (2009). [CrossRef]
  4. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12(16), 3737–3744 (2004). [CrossRef] [PubMed]
  5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14(25), 12388–12393 (2006). [CrossRef] [PubMed]
  6. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  8. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 3514–3520 (2009). [CrossRef] [PubMed]
  9. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett.98(5), 051101 (2011). [CrossRef]
  10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express18(15), 16206–16216 (2010). [CrossRef] [PubMed]
  11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express15(13), 8104–8114 (2007). [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).
  13. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  14. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010). [CrossRef] [PubMed]
  15. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010). [CrossRef] [PubMed]
  16. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev.110(1), 111–131 (2010). [CrossRef] [PubMed]
  17. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B28(11), 2777–2784 (2011). [CrossRef]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express14(11), 4786–4799 (2006). [CrossRef] [PubMed]
  19. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite-difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008). [CrossRef]
  20. P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol.12(3), 487–494 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited