OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 827–834

Near-infrared tunable lasers with polymer waveguide Bragg gratings

Nam-Seon Son, Kyung-Jo Kim, Jun-Whee Kim, and Min-Cheol Oh  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 827-834 (2012)
http://dx.doi.org/10.1364/OE.20.000827


View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength tunable lasers operating at near infrared (NIR) wavelength are demonstrated through the thermo-optic (TO) refractive index tuning of polymer waveguide Bragg reflectors. The polymer-waveguide device has superior TO efficiency for substantially changing the refractive index, and it enables direct tuning of the Bragg reflection wavelength over a wide range. The waveguide is optimized for NIR wavelengths, and a third-order Bragg reflector is incorporated for facilitating fabrication of the grating. The laser exhibits an output power of 0 dBm, a side-mode suppression ratio of 40 dB, and a tuning range of 21 nm.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(230.1480) Optical devices : Bragg reflectors
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 10, 2011
Revised Manuscript: November 19, 2011
Manuscript Accepted: December 11, 2011
Published: January 3, 2012

Citation
Nam-Seon Son, Kyung-Jo Kim, Jun-Whee Kim, and Min-Cheol Oh, "Near-infrared tunable lasers with polymer waveguide Bragg gratings," Opt. Express 20, 827-834 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-827


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009). [CrossRef] [PubMed]
  2. I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl.22(3), 199–206 (2007). [CrossRef]
  3. G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006). [CrossRef] [PubMed]
  4. C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng.21, 7–13 (2001).
  5. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett.35(21), 3631–3633 (2010). [CrossRef] [PubMed]
  6. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007). [CrossRef] [PubMed]
  7. G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express16(20), 16093–16103 (2008). [CrossRef] [PubMed]
  8. M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics2(3), 180–184 (2008). [CrossRef]
  9. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.)16(2), 130–133 (2004). [CrossRef]
  10. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express14(13), 5937–5944 (2006). [CrossRef] [PubMed]
  11. S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett.19(3), 176–178 (2007). [CrossRef]
  12. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express17(22), 20227–20232 (2009). [CrossRef] [PubMed]
  13. Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express16(22), 18194–18201 (2008). [CrossRef] [PubMed]
  14. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express18(8), 8392–8399 (2010). [CrossRef] [PubMed]
  15. M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers3(3), 975–997 (2011). [CrossRef]
  16. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010). [CrossRef]
  17. J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express18(15), 16217–16226 (2010). [CrossRef] [PubMed]
  18. M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron.7(5), 826–835 (2001). [CrossRef]
  19. Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett.5(7), 782–784 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited