OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 864–869

Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode

Jun-Hee Na, Seung Chul Park, Se-Um Kim, Yoonseuk Choi, and Sin-Doo Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 864-869 (2012)
http://dx.doi.org/10.1364/OE.20.000864


View Full Text Article

Enhanced HTML    Acrobat PDF (2762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(230.3720) Optical devices : Liquid-crystal devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: October 20, 2011
Revised Manuscript: December 5, 2011
Manuscript Accepted: December 16, 2011
Published: January 3, 2012

Citation
Jun-Hee Na, Seung Chul Park, Se-Um Kim, Yoonseuk Choi, and Sin-Doo Lee, "Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode," Opt. Express 20, 864-869 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. deGennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University Press, New York, 1993).
  2. H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng.39(1), 32–39 (2000). [CrossRef]
  3. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett.29(23), 2734–2736 (2004). [CrossRef] [PubMed]
  4. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002). [CrossRef]
  5. H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett.84(23), 4789–4791 (2004). [CrossRef]
  6. B. Wang, M. Ye, and S. Sato, “Numerical study of a lens-shaped liquid crystal cell,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)413(1), 423–433 (2004). [CrossRef]
  7. W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)508(1), 397–402 (2009). [CrossRef]
  8. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” in Proceedings of SID Symp. Dig. (Gonzalez convention center, San Antonio, Texas, 2009), 111–113.
  9. M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B26(11), 2035–2043 (2009). [CrossRef]
  10. J.-H. Na, S. C. Park, S.-U. Kim, and S.-D. Lee, “Tunable lenticular lens array using liquid crystal on periodically undulated electrodes for autostereoscopic 2D/3D convertible displays,” in Proceedings of SID Symp. Dig. (Los Angeles convention center, Los Angeles, Calif., 2011), 1584–1586.
  11. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater.21(1-3), 643–646 (2003). [CrossRef]
  12. Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys.44(1A), 243–244 (2005). [CrossRef]
  13. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crystal layer,” Appl. Phys. Lett.91(22), 221113 (2007). [CrossRef]
  14. J. Lee, S.-W. Suh, K. Lee, and S.-D. Lee, “Calculation of a surface-induced polar effect in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(1), 923–926 (1994). [CrossRef] [PubMed]
  15. Data sheet of ZLI-4151–000 provided by Merck Ltd.
  16. G. Barbero, L. R. Evangelista, and N. V. Madhusudana, “Effect of surface electric field on the anchoring of nematic liquid crystals,” Eur. Phys. J. B1(3), 327–331 (1998). [CrossRef]
  17. J.-H. Na, H. Pae, J. Kim, C.-J. Yu, and S.-D. Lee, “A mean-field photoreaction model for the pretilt generation of a liquid crystal on photopolymer layers upon ultraviolet exposure,” Jpn. J. Appl. Phys.50, 034101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited