OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 905–911

High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses

Jian-Wu Yao, Cheng-Yun Zhang, Hai-Ying Liu, Qiao-Feng Dai, Li-Jun Wu, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 905-911 (2012)
http://dx.doi.org/10.1364/OE.20.000905


View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The high spatial frequency periodic structures induced on metal surface by femtosecond laser pulses was investigated experimentally and numerically. It is suggested that the redistribution of the electric field on metal surface caused by the initially formed low spatial frequency periodic structures plays a crucial role in the creation of high spatial frequency periodic structures. The field intensity which is initially localized in the grooves becomes concentrated on the ridges in between the grooves when the depth of the grooves exceeds a critical value, leading to the ablation of the ridges in between the grooves and the formation of high spatial frequency periodic structures. The proposed formation process is supported by both the numerical simulations based on the finite-difference time-domain technique and the experimental results obtained on some metals such as stainless steel and nickel.

© 2012 OSA

OCIS Codes
(160.3900) Materials : Metals
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: November 9, 2011
Revised Manuscript: November 27, 2011
Manuscript Accepted: November 27, 2011
Published: January 4, 2012

Citation
Jian-Wu Yao, Cheng-Yun Zhang, Hai-Ying Liu, Qiao-Feng Dai, Li-Jun Wu, Sheng Lan, Achanta Venu Gopal, Vyacheslav A. Trofimov, and Tatiana M. Lysak, "High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses," Opt. Express 20, 905-911 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-905


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett.40(9), 824–826 (1982). [CrossRef]
  3. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  4. J. S. Preston, H. M. van Driel, and J. E. Sipe, “Pattern formation during laser melting of silicon,” Phys. Rev. B Condens. Matter40(6), 3942–3954 (1989). [CrossRef] [PubMed]
  5. S. E. Clark and D. C. Emmony, “Ultraviolet-laser-induced periodic surface structures,” Phys. Rev. B Condens. Matter40(4), 2031–2041 (1989). [CrossRef] [PubMed]
  6. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: nonclassical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197–198, 891–895 (2002). [CrossRef]
  7. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Subwavelength ripple formation induced by tightly focused femtosecond laser radiation,” Appl. Surf. Sci.252(24), 8576–8579 (2006). [CrossRef]
  8. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  9. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005). [CrossRef]
  10. A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys.104(6), 063523 (2008). [CrossRef]
  11. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  12. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express13(17), 6651–6656 (2005). [CrossRef] [PubMed]
  13. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  14. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett.34(12), 1846–1848 (2009). [CrossRef] [PubMed]
  15. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35(8), 1248–1250 (2010). [CrossRef] [PubMed]
  16. J. Wang and C. Guo, “Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses,” J. Appl. Phys.100(2), 023511 (2006). [CrossRef]
  17. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses,” J. Appl. Phys.106(10), 104910 (2009). [CrossRef]
  18. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  19. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structures. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  20. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci.186(1-4), 352–357 (2002). [CrossRef]
  21. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005). [CrossRef]
  22. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett.98(21), 211905 (2011). [CrossRef]
  23. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  24. Y. Dong and P. Molian, “Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser,” Appl. Phys. Lett.84(1), 10–12 (2004). [CrossRef]
  25. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011). [CrossRef] [PubMed]
  26. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited