OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 918–933

An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging

Torbjørn Skauli  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 918-933 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coregistration errors in multi- and hyperspectral imaging sensors arise when the spatial sensitivity pattern differs between bands or when the spectral response varies across the field of view, potentially leading to large errors in the recorded image data. In imaging spectrometers, spectral and spatial offset errors are customarily specified as “smile” and “keystone” distortions. However these characteristics do not account for errors resulting from variations in point spread function shape or spectral bandwidth. This paper proposes improved metrics for coregistration error both in the spatial and spectral dimensions. The metrics are essentially the integrated difference between point spread functions. It is shown that these metrics correspond to an upper bound on the error in image data. The metrics enable estimation of actual data errors for a given image, and can be used as part of the merit function in optical design optimization, as well as for benchmarking of spectral image sensors.

© 2012 OSA

OCIS Codes
(040.1490) Detectors : Cameras
(110.3000) Imaging systems : Image quality assessment
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(100.4145) Image processing : Motion, hyperspectral image processing
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: October 24, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 12, 2011
Published: January 4, 2012

Torbjørn Skauli, "An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging," Opt. Express 20, 918-933 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mouroulis, D. A. Thomas, T. G. Chrien, V. Duval, R. O. Green, J. J. Simmonds, and A. H. Vaughan, Trade Studies in Multi/hyperspectral Imaging Systems—Final Report (NASA Jet Propulsion Laboratory, 1998).
  2. P. Mouroulis, “Spectral and spatial uniformity in pushbroom imaging spectrometers,” Proc. SPIE3753, 133–141 (1999). [CrossRef]
  3. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt.39(13), 2210–2220 (2000). [CrossRef] [PubMed]
  4. R. O. Green, “Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt.37(4), 683–690 (1998). [CrossRef] [PubMed]
  5. P. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng.39(3), 808–816 (2000). [CrossRef]
  6. R. A. Neville and L. Sun, “Karl Staenz, “Detection of spectral line curvature in imaging spectrometer data,” Proc. SPIE5093, 144–154 (2003). [CrossRef]
  7. R. A. Neville, L. Sun, and K. Staenz, “Detection of keystone in imaging spectrometer data,” Proc. SPIE5425, 208–217 (2004). [CrossRef]
  8. J. Zadnik, D. Guerin, R. Moss, A. Orbeta, R. Dixon, C. Simi, S. Dunbar, and A. Hill, “Calibration procedures and measurements for the COMPASS hyperspectral imager,” Proc. SPIE5425, 182–188 (2004). [CrossRef]
  9. D. Schläpfer, J. Nieke, and K. I. Itten, “Spatial PSF Non-uniformity Effects In Airborne Pushbroom Imaging Spectrometry Data,” IEEE Trans. Geosci. Rem. Sens.45(2), 458–468 (2007). [CrossRef]
  10. F. Dell’Endice, J. Nieke, D. Schläpfer, and K. I. Itten, “Scene-based method for spatial misregistration detection in hyperspectral imagery,” Appl. Opt.46(15), 2803–2816 (2007). [CrossRef] [PubMed]
  11. P. Mouroulis and R. O. Green, “Spectral response evaluation and computation for pushbroom imaging spectrometers,” Proc. SPIE6667, 66670G (2007). [CrossRef]
  12. J. T. Casey and J. P. Kerekes, “Misregistration impacts on hyperspectral target detection,” J. Appl. Remote Sens.3(1), 033513 (2009). [CrossRef]
  13. T. Skauli, “Quantifying coregistration errors in spectral imaging,” Proc. SPIE8158, 81580A, 81580A-8 (2011). [CrossRef]
  14. G. Lin, R. E. Wolfe, and M. Nishihama, “NPP VIIRS geometric performance status,” Proc. SPIE8153, 81531V, 81531V-14 (2011). [CrossRef]
  15. T. Skauli, “Sensor noise informed representation of hyperspectral data, with benefits for image storage and processing,” Opt. Express19(14), 13031–13046 (2011). [CrossRef] [PubMed]
  16. C. D. Claxton and R. C. Staunton, “Measurement of the point-spread function of a noisy imaging system,” J. Opt. Soc. Am. A25(1), 159–170 (2008). [CrossRef] [PubMed]
  17. H. Du and K. J. Voss, “Effects of point-spread function on calibration and radiometric accuracy of CCD camera,” Appl. Opt.43(3), 665–670 (2004). [CrossRef] [PubMed]
  18. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “The focus of light - theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B72, 109–113 (2001).
  19. H. Hovland, “Tomographic scanning imager,” Opt. Express17(14), 11371–11387 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited