OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 934–940

Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates

Masahiro Shimizu, Masaaki Sakakura, Masatoshi Ohnishi, Masahiro Yamaji, Yasuhiko Shimotsuma, Kazuyuki Hirao, and Kiyotaka Miura  »View Author Affiliations

Optics Express, Vol. 20, Issue 2, pp. 934-940 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally determined the three-dimensional temperature distribution and modification mechanism in a soda-lime-silicate glass under irradiation of ultrafast laser pulses at high repetition rates by analyzing the relationship between the morphology of the modification and ambient temperature. In contrast to previous studies, we consider the temperature dependence of thermophysical properties and the nonlinear effect on the absorbed energy distribution along the beam propagation axis in carrying out analyses. The optical absorptivity evaluated with the temperature distribution is approximately 80% and at most 3.5% smaller than that evaluated by the transmission loss measurement. The temperature distribution and the strain distribution indicate that visco-elastic deformation and material flow play important roles in the laser-induced modification inside a glass.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 26, 2011
Manuscript Accepted: November 15, 2011
Published: January 4, 2012

Masahiro Shimizu, Masaaki Sakakura, Masatoshi Ohnishi, Masahiro Yamaji, Yasuhiko Shimotsuma, Kazuyuki Hirao, and Kiyotaka Miura, "Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates," Opt. Express 20, 934-940 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  2. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  3. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  4. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011). [CrossRef] [PubMed]
  5. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008). [CrossRef]
  6. S. F. Zhou, N. Jiang, K. Miura, S. Tanabe, M. Shimizu, M. Sakakura, Y. Shimotsuma, M. Nishi, J. R. Qiu, and K. Hirao, “Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence,” J. Am. Chem. Soc. 132(50), 17945–17952 (2010). [CrossRef] [PubMed]
  7. M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, “Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation,” Appl. Phys., A Mater. Sci. Process. 100(4), 1001–1005 (2010). [CrossRef]
  8. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).
  9. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008). [CrossRef]
  10. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010). [CrossRef]
  11. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77(10), 104205 (2008). [CrossRef]
  12. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003). [CrossRef]
  13. A. Royon, Y. Petit, G. Papon, M. Richardson, and L. Canioni, “Femtosecond laser induced photochemistry in materials tailored with photosensitive agents,” Opt. Mater. Express 1(5), 866–882 (2011). [CrossRef]
  14. Glass data sheet from Schott.
  15. M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011). [CrossRef] [PubMed]
  16. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, “Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model,” Int. J. Thermophys. 19(3), 941–949 (1998). [CrossRef]
  17. H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda, “Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature,” Rev. Sci. Instrum. 72(3), 1899–1903 (2001). [CrossRef]
  18. J. Huang and P. K. Gupta, “Temperature-dependence of the isostructural heat-capacity of a soda lime silicate glass,” J. Non-Cryst Sol. 139, 239–247 (1992).
  19. H. Shibata, A. Suzuki, and H. Ohta, “Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique,” Mater. Trans. 46(8), 1877–1881 (2005). [CrossRef]
  20. K. I. Popov, C. McElcheran, K. Briggs, S. Mack, and L. Ramunno, “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19(1), 271–282 (2011). [CrossRef] [PubMed]
  21. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited