OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 2 — Jan. 16, 2012
  • pp: 966–971

Self-referenced composite Fabry-Pérot cavity vapor sensors

Karthik Reddy and Xudong Fan  »View Author Affiliations


Optics Express, Vol. 20, Issue 2, pp. 966-971 (2012)
http://dx.doi.org/10.1364/OE.20.000966


View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a versatile, self-referenced composite Fabry-Pérot (FP) sensor and the corresponding detection scheme for rapid and precise measurement of vapors. The composite FP vapor sensor is formed by etching two juxtaposed micron-deep wells, with a precisely controlled offset in depth, on a silicon wafer. The wells are then coated with a vapor sensitive polymer and the reflected light from each well is detected by a CMOS imager. Due to its self-referenced nature, the composite FP sensor is able to extract the change in thickness and refractive index of the polymer layer upon exposure to analyte vapors, thus allowing for accurate vapor quantitation regardless of the polymer thickness, refractive index, and light incident angle and wavelength. Theoretical analysis is first performed to elucidate the underlying detection principle, followed by experimental demonstration at two different incident angles showing rapid and consistent measurement of the polymer changes when the polymer is exposed to three different analytes at various concentrations. The vapor detection limit is found to be on the order of a few pico-grams (~100 ppb)

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.3990) Optical devices : Micro-optical devices
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 21, 2011
Revised Manuscript: December 9, 2011
Manuscript Accepted: December 12, 2011
Published: January 4, 2012

Citation
Karthik Reddy and Xudong Fan, "Self-referenced composite Fabry-Pérot cavity vapor sensors," Opt. Express 20, 966-971 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-2-966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem.11(1-3), 21–27 (1993). [CrossRef]
  2. D. Reichl, R. Krage, C. Krumme, and G. Gauglitz, “Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup,” Appl. Spectrosc.54(4), 583–586 (2000). [CrossRef]
  3. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express17(4), 2731–2738 (2009). [CrossRef] [PubMed]
  4. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem.82(11), 4370–4375 (2010). [CrossRef] [PubMed]
  5. C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem.147(1), 37–42 (2010). [CrossRef]
  6. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem.159(1), 60–65 (2011). [CrossRef]
  7. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:. [CrossRef]
  8. H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst.11(6), 718–725 (2002). [CrossRef]
  9. M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst.14(5), 1039–1050 (2005). [CrossRef]
  10. S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev.26(12), 1880–1886 (1979). [CrossRef]
  11. G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem.77(23), 7563–7571 (2005). [CrossRef] [PubMed]
  12. S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem.79(7), 2911–2917 (2007). [CrossRef] [PubMed]
  13. E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem.67(6), 1092–1106 (1995). [CrossRef] [PubMed]
  14. E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A.105(23), 7988–7992 (2008). [CrossRef] [PubMed]
  15. P. C. Beard, “Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning,” Meas. Sci. Technol.14(11), 1998–2005 (2003). [CrossRef]
  16. Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt.13(6), 064033 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited