OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21840–21846

Ultra-compact, high-Q silicon microdisk reflectors

Wei Shi, Han Yun, Wen Zhang, Charlie Lin, Ting Kai Chang, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21840-21846 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate wavelength-selective reflectors based on silicon microdisk resonators integrated with compact Y-branch splitters, using a CMOS-photonics technology. A high quality factor (Q) of ∼ 88,000 was measured in the reflection spectrum for a 2.5-μm-radius device with a small footprint of 6 × 17 μm2 and a wide free-spectral range (FSR) of over 41 nm. As the radius is reduced to 1.5 μm, corresponding to a device footprint of 4 × 15 μm2, the spectrum shows an ultra-wide FSR of over 71 nm with the compromise of having a reduced Q of ∼ 4000. The coupling between a microdisk and a waveguide is numerically investigated. We further propose a multichannel sensing system using cascaded microdisk reflectors.

© 2012 OSA

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(130.6010) Integrated optics : Sensors
(230.7020) Optical devices : Traveling-wave devices
(230.4555) Optical devices : Coupled resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: July 6, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: August 23, 2012
Published: September 10, 2012

Wei Shi, Han Yun, Wen Zhang, Charlie Lin, Ting Kai Chang, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski, "Ultra-compact, high-Q silicon microdisk reflectors," Opt. Express 20, 21840-21846 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Chung, D.-G. Kim, and N. Dagli, “Reflection properties of coupled-ring reflectors,” J. Lightwave Technol. 24, 1865–1874 (2006). [CrossRef]
  2. G. T. Paloczi, J. Scheuer, and A. Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Technol. Lett. 17, 390–392 (2005). [CrossRef]
  3. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16, 1331–1333 (2004). [CrossRef]
  4. A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105–091105–3 (2011). [CrossRef]
  5. I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005). [CrossRef]
  6. H. Sun, A. Chen, and L. R. Dalton, “A reflective microring notch filter and sensor,” Opt. Express 17, 10731–10737 (2009). [CrossRef] [PubMed]
  7. W. Shi, R. Vafaei, M. Á. G. Torres, N. A. F. Jaeger, and L. Chrostowski, “Design and characterization of microring reflectors with a waveguide crossing,” Opt. Lett. 35, 2901–2903 (2010). [CrossRef] [PubMed]
  8. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17, 14063–14068 (2009). [CrossRef] [PubMed]
  9. J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102–251102–3 (2005). [CrossRef]
  10. V. Van, “Dual-mode microring reflection filters,” J. Lightwave Technol. 25, 3142–3150 (2007). [CrossRef]
  11. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005). [CrossRef]
  12. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, A. S. S, D. M. Ratner, and N. A. F. Jaeger, “Silicon photonic resonator sensors and devices,” Proceedings of SPIE 8236, 823620 (2012). [CrossRef]
  13. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18, 19541–19557 (2010). [CrossRef] [PubMed]
  14. G. Yoffe, T. Nguyen, J. Heanue, and B. Pezeshki, “Efficient compact tunable laser for access networks using silicon ring resonators,” OFC/NFOEC, Los Angeles, CA, USA OW1G.4 (2012).
  15. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18, 19055–19063 (2010). [CrossRef] [PubMed]
  16. D. G. Rabus, Integrated Ring Resonators (Springer, 2007).
  17. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002). [CrossRef]
  18. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46, 1158–1169 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited