OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21847–21859

Dynamic response of modulators based on cascaded-ring-resonator

Suguru Akiyama and Shintaro Nomura  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21847-21859 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the dynamic response of a cascaded-ring-resonator-loaded Mach–Zehnder modulator (CRR-MZM), in which a number of cascaded ring resonators (RRs) are loaded in the interferometer as phase modulators. The analytical form is derived for the small-signal response of CRR-MZM using temporal-coupled-mode (TCM) theory, and its validity is confirmed by numerical calculations. It is revealed that the bandwidth of the CRR-MZM is maximized by setting proper delays in driving signals between neighboring RRs; the optimized delay is twice the photon lifetime of each RR. The calculated performances of CRR-MZMs are compared with those of standard modulators based on a single-ring-resonator (SRR) without interferometer, in terms of the modulation depth and bandwidth. For a given degree of the refractive index change in a waveguide, CRR-MZM can provide a larger modulation depth than a SRR-type modulator in frequency ranges exceeding 25 GHz.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators
(250.4110) Optoelectronics : Modulators

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 23, 2012
Published: September 10, 2012

Suguru Akiyama and Shintaro Nomura, "Dynamic response of modulators based on cascaded-ring-resonator," Opt. Express 20, 21847-21859 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  2. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007). [CrossRef] [PubMed]
  3. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  4. J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWQ4 (2011).
  5. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS 2011), paper PDPA8 (2011).
  6. J. C. Rosenberg, W. M. J. Green, S. Assefa, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “Low-power 30 Gbps silicon microring modulator,” in Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS 2011), paper PDPB9 (2011).
  7. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19(21), 20435–20443 (2011). [CrossRef] [PubMed]
  8. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express 3(7), 072202 (2010). [CrossRef]
  9. D. M. Gill, S. S. Patel, M. Rasras, K. Y. Tu, A. E. White, Y. K. Chen, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010). [CrossRef]
  10. S. Akiyama, T. Kurahashi, K. Morito, T. Yamamoto, T. Usuki, and S. Nomura, “Cascaded-ring-resonator-loaded Mach-Zehnder modulator for enhanced modulation efficiency in wide optical bandwidth,” Opt. Express 20(15), 16321–16338 (2012). [CrossRef]
  11. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30(1), 9–14 (2012). [CrossRef]
  12. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011). [CrossRef] [PubMed]
  13. A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express 19(21), 20876–20885 (2011). [CrossRef] [PubMed]
  14. H. Tazawa, Y. Kuo, I. Dunayevskiy, J. Luo, A. K. Y. Jen, H. Fetterman, and W. Steier, “Ring resonator based electrooptic polymer traveling-wave modulator,” J. Lightwave Technol. 24(9), 3514–3519 (2006). [CrossRef]
  15. H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach-Zehnder modulator with single microring resonator and optimized arm length,” 17th Microoptics Conference (MOC' 11), Sendai, Japan, paper G-5, (2011).
  16. H. F. Taylor, “Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation,” J. Lightwave Technol. 17(10), 1875–1883 (1999). [CrossRef]
  17. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). [CrossRef]
  18. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  19. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  20. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006). [CrossRef]
  21. F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  22. I. L. Gheorma and R. M. Osgood, “Fundamental limitations of optical resonator based on high-speed EO modulators,” IEEE Photon. Technol. Lett. 14(6), 795–797 (2002). [CrossRef]
  23. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008). [CrossRef] [PubMed]
  24. L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010). [CrossRef]
  25. T. Ye and X. Cai, “On power consumption of silicon-microring-based optical modulators,” J. Lightwave Technol. 28(11), 1615–1623 (2010). [CrossRef]
  26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition, (Princeton University Press, 2008).
  27. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  28. K. Okamoto, Fundamentals of Optical Waveguides, (Academic Press, 2006), Chap. 5.
  29. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited