OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21860–21874

Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates

Shao-Ying Ting, Yu-Feng Yao, Wei-Lun Chung, Wen-Ming Chang, Chih-Yen Chen, Hao-Tsung Chen, Che-Hao Liao, Horng-Shyang Chen, Chieh Hsieh, and C. C. Yang  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21860-21874 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



CdZnO/ZnO quantum well (QW) samples are grown on GaN and ZnO templates with plasma-assisted molecular beam epitaxy under different conditions of substrate temperature, Cd effusion cell temperature, and O2 flow rate for emission characteristics comparison. It is found that the Cd incorporation on the ZnO template is generally lower, when compared with that on the GaN template, such that the O2 flow rate needs to be reduced for stoichiometric CdZnO/ZnO QW growth on the ZnO template. Besides the wurtzite (wt) CdZnO structure, the rock-salt (rs) CdZnO structure exists in the CdZnO well layers when the total Cd content is high. The rs structure may dominate over the wt structure in photoluminescence intensity when the total Cd content is high. In either group of samples on the GaN and ZnO templates, the emission efficiency first increases and then decreases with increasing total Cd content. The low emission efficiency at low (high) Cd content is attributed to the weaker quantum confinement (the poorer crystal quality) of the QWs. The emission efficiencies of the QW samples on the GaN template are generally higher than those on the ZnO template. The carrier localization behavior in a CdZnO/ZnO QW, grown on either GaN or ZnO template, is significantly weaker than that in an InGaN/GaN QW. The strength of the quantum-confined Stark effect generally increases with increasing Cd content in either group of samples on the GaN and ZnO templates.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:

Original Manuscript: July 12, 2012
Manuscript Accepted: September 3, 2012
Published: September 10, 2012

Shao-Ying Ting, Yu-Feng Yao, Wei-Lun Chung, Wen-Ming Chang, Chih-Yen Chen, Hao-Tsung Chen, Che-Hao Liao, Horng-Shyang Chen, Chieh Hsieh, and C. C. Yang, "Comparison of emission characteristics between the CdZnO/ZnO quantum wells on ZnO and GaN templates," Opt. Express 20, 21860-21874 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Koffyberg, “Thermoreflectance spectra of CdO: Band gaps and band-population effects,” Phys. Rev. B 13(10), 4470–4476 (1976). [CrossRef]
  2. J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1−xCdxO systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006). [CrossRef]
  3. Y. Z. Zhu, G. D. Chen, H. Ye, A. Walsh, C. Y. Moon, and S. H. Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B 77(24), 245209 (2008). [CrossRef]
  4. K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, and S. Fujita, “Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy,” J. Cryst. Growth 237-239, 514–517 (2002). [CrossRef]
  5. A. Y. Azarov, T. C. Zhang, B. G. Svensson, and A. Y. Kuznetsov, “Cd diffusion and thermal stability of CdZnO/ZnO heterostructures,” Appl. Phys. Lett. 99, 111903 (2011). [CrossRef]
  6. R. Zhang, P. Chen, Y. Zhang, X. Ma, and D. Yang, “Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films,” J. Cryst. Growth 312(12-13), 1908–1911 (2010). [CrossRef]
  7. H. S. Kang, S. H. Lim, J. W. Kim, H. W. Chang, G. H. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker, and Q. X. Jia, “Exciton localization and Stokes’ shift in Zn1−xCdxO thin films depending on chemical composition,” J. Cryst. Growth 287(1), 70–73 (2006). [CrossRef]
  8. S. Sadofev, P. Schäfer, Y. H. Fan, S. Blumstengel, F. Henneberger, D. Schulz, and D. Klimm, “Radical-source molecular beam epitaxy of ZnMgO and ZnCdO alloys on ZnO substrates,” Appl. Phys. Lett. 91(20), 201923 (2007). [CrossRef]
  9. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schäfer, and F. Henneberger, “Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy,” Appl. Phys. Lett. 89(20), 201907 (2006). [CrossRef]
  10. J. J. Chen, S. Jang, F. Rena, S. Rawal, Y. Li, H. S. Kim, D. P. Norton, S. J. Pearton, and A. Osinsky, “Thermal stability of Ti/Al/Pt/Au and Ti/Au Ohmic contacts on n-type ZnCdO,” Appl. Surf. Sci. 253(2), 746–752 (2006). [CrossRef]
  11. X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, “Band gap properties of Zn1−xCdxO alloys grown by molecular-beam epitaxy,” Appl. Phys. Lett. 89(15), 151909 (2006). [CrossRef]
  12. L. Li, Z. Yang, Z. Zuo, J. H. Lim, and J. L. Liu, “Thermal stability of CdZnO thin films grown by molecular-beam epitaxy,” Appl. Surf. Sci. 256(14), 4734–4737 (2010). [CrossRef]
  13. L. Li, Z. Yang, Z. Zuo, J. Y. Kong, and J. L. Liu, “Study of rapid thermal annealing effect on CdZnO thin films grown on Si substrate,” J. Vac. Sci. Technol. B 28(3), C3D13, D16 (2010). [CrossRef]
  14. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinumac, “Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632–1634 (2000). [CrossRef]
  15. S. Sadofev, S. Kalusniak, J. Puls, P. Schäfer, S. Blumstengel, and F. Henneberger, “Visible-wavelength laser action of ZnCdO/(Zn,Mg)O multiple quantum well structures,” Appl. Phys. Lett. 91(23), 231103 (2007). [CrossRef]
  16. S. Kalusniak, S. Sadofev, J. Puls, and F. Henneberger, “ZnCdO/ZnO – a new heterosystem for green-wavelength semiconductor lasing,” Laser Photon. Rev. 3(3), 233–242 (2009). [CrossRef]
  17. S. Blumstengel, S. Sadofev, H. Kirmse, and F. Henneberger, “Extreme low-temperature molecular beam epitaxy of ZnO-based quantum structures,” Appl. Phys. Lett. 98(3), 031907 (2011). [CrossRef]
  18. A. V. Thompson, C. Boutwell, J. W. Mares, W. V. Schoenfeld, A. Osinsky, B. Hertog, J. Q. Xie, S. J. Pearton, and D. P. Norton, “Thermal stability of CdZnO/ZnO multi-quantum-wells,” Appl. Phys. Lett. 91(20), 201921 (2007). [CrossRef]
  19. W. Lim, D. P. Norton, S. J. Pearton, X. J. Wang, W. M. Chen, I. A. Buyanova, A. Osinsky, J. W. Dong, B. Hertog, A. V. Thompson, W. V. Schoenfeld, Y. L. Wang, and F. Ren, “Migration and luminescence enhancement effects of deuterium in ZnO/ZnCdO quantum wells,” Appl. Phys. Lett. 92(3), 032103 (2008). [CrossRef]
  20. I. A. Buyanova, X. J. Wang, G. Pozina, W. M. Chen, W. Lim, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and B. Hertog, “Effects of hydrogen on the optical properties of ZnCdO/ZnO quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 92(26), 261912 (2008). [CrossRef]
  21. W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, “Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate,” Appl. Phys. Lett. 97(6), 061911 (2010). [CrossRef]
  22. W. F. Yang, L. M. Wong, S. J. Wang, H. D. Sun, C. H. Ge, A. Y. S. Lee, and H. Gong, “Photoluminescence characteristics of ZnCdO/ZnO single quantum well grown by pulsed laser deposition,” Appl. Phys. Lett. 98(12), 121903 (2011). [CrossRef]
  23. K. Yamamoto, M. Adachi, T. Tawara, H. Gotoh, A. Nakamura, and J. Temmyo, “Synthesis and characterization of ZnCdO/ZnO multiple quantum wells by remote-plasma-enhanced MOCVD,” J. Cryst. Growth 312(9), 1496–1499 (2010). [CrossRef]
  24. X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perkins, D. Young, and T. J. Coutts, “p-Type ZnO thin films formed by CVD reaction of diethylzinc and NO gas,” Electrochem. Solid-State Lett. 6(4), C56–C58 (2003). [CrossRef]
  25. Z. Q. Fang, B. Claflin, D. C. Look, L. L. Kerr, and X. Li, “Electron and hole traps in N-doped ZnO grown on p-type Si by metalorganic chemical vapor deposition,” J. Appl. Phys. 102(2), 023714 (2007). [CrossRef]
  26. S. Jang, J. J. Chen, B. S. Kang, F. Ren, D. P. Norton, S. J. Pearton, J. Lopata, and W. S. Hobson, “Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn3P2 source,” Appl. Phys. Lett. 87(22), 222113 (2005). [CrossRef]
  27. Z. G. Yu, P. Wu, and H. Gong, “Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering,” Appl. Phys. Lett. 88(13), 132114 (2006). [CrossRef]
  28. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth 216(1-4), 330–334 (2000). [CrossRef]
  29. D. C. Look, G. M. Renlund, R. H. Burgener, and J. R. Sizelove, “As-doped p-type ZnO produced by an evaporation/sputtering process,” Appl. Phys. Lett. 85(22), 5269–5271 (2004). [CrossRef]
  30. V. Vaithinathan, B. T. Lee, C. W. Chang, K. Asokan, and S. S. Kim, “Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy,” Appl. Phys. Lett. 88(11), 112103 (2006). [CrossRef]
  31. J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du, “Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure,” Appl. Phys. Lett. 90(12), 121128 (2007). [CrossRef]
  32. C. Yuen, S. F. Yu, E. S. P. Leong, S. P. Lau, K. Pita, H. Y. Yang, and T. P. Chen, “Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique,” J. Appl. Phys. 101(9), 094905 (2007). [CrossRef]
  33. L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, “Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection,” Appl. Phys. Lett. 88(9), 092103 (2006). [CrossRef]
  34. W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, Y. Che, Z. D. Hu, and B. Liu, “Microstructure and properties of epitaxial antimony-doped p-type ZnO films fabricated by pulsed laser deposition,” Appl. Phys. Lett. 90(24), 242108 (2007). [CrossRef]
  35. H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee, “Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant,” Appl. Phys. Lett. 88(20), 202108 (2006). [CrossRef]
  36. F. X. Xiu, L. J. Mandalapu, Z. Yang, J. L. Li, G. F. Liu, and J. A. Yarmoff, “Bi-induced acceptor states in ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 89(5), 052103 (2006). [CrossRef]
  37. A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, and A. Krost, “Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic,” Appl. Phys. Lett. 87(26), 262105 (2005). [CrossRef]
  38. J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, “p-type conduction in N–Al co-doped ZnO thin films,” Appl. Phys. Lett. 85(15), 3134–3135 (2004). [CrossRef]
  39. J. G. Lu, Z. Z. Ye, G. D. Yuan, Y. J. Zeng, F. Zhuge, L. P. Zhu, B. H. Zhao, and S. B. Zhang, “Electrical characterization of ZnO-based homojunctions,” Appl. Phys. Lett. 89(5), 053501 (2006). [CrossRef]
  40. L. Li, Z. Yang, J. Y. Kong, and J. L. Liu, “Blue electroluminescence from ZnO based heterojunction diodes with CdZnO active layers,” Appl. Phys. Lett. 95(23), 232117 (2009). [CrossRef]
  41. K. Yamamoto, A. Nakamura, J. Temmyo, E. Muñoz, and A. Hierro, “Green electroluminescence from ZnCdO multiple quantum-well light-emitting diodes grown by remote-plasma-enhanced metal–organic chemical vapor deposition,” IEEE Photon Technol. Lett. 23(15), 1052–1054 (2011). [CrossRef]
  42. J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, “Hybrid CdZnO/GaN quantum-well light emitting diodes,” J. Appl. Phys. 104(9), 093107 (2008). [CrossRef]
  43. S. Y. Ting, H. S. Chen, W. M. Chang, J. J. Huang, C. H. Liao, C. Y. Chen, C. Hsieh, Y. F. Yao, H. T. Chen, Y. W. Kiang, and C. C. Yang, “MBE-grown CdZnO/ZnO multiple quantum-well light-emitting diode on MOCVD-grown p-type GaN,” IEEE Photon. Technol. Lett. 24(11), 909–911 (2012). [CrossRef]
  44. I. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996). [CrossRef]
  45. Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yang, C. C. Chuo, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000). [CrossRef]
  46. Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, J. R. Yang, A. Rosenauer, K.-J. Ma, S.-C. Shi, L. C. Chen, C.-C. Pan, and J.-I. Chyi, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett. 84(14), 2506–2508 (2004). [CrossRef]
  47. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003). [CrossRef]
  48. A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, “Equation for internal quantum efficiency and its temperature dependence of luminescence, and application to InxGa1-xN/GaN multiple quantum wells,” Jpn. J. Appl. Phys. 45(11), 8719–8723 (2006). [CrossRef]
  49. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998). [CrossRef]
  50. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998). [CrossRef]
  51. C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum well light-emitting diode of prestrained growth,” Appl. Phys. Lett. 91(5), 051121 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited