OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21875–21887

Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal

Min-Suk Kwon, Jin-Soo Shin, Sang-Yung Shin, and Wan-Gyu Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 21875-21887 (2012)
http://dx.doi.org/10.1364/OE.20.021875


View Full Text Article

Enhanced HTML    Acrobat PDF (5181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate experimentally metal-insulator-silicon-insulator-metal (MISIM) waveguides that are fabricated by using fully standard CMOS technology. They are hybrid plasmonic waveguides, and they have a feature that their insulator is replaceable with functional material. We explain a fabrication process for them and discuss fabrication results based on 8-inch silicon-on-insulator wafers. We measured the propagation characteristics of the MISIM waveguides that were actually fabricated to be connected to Si photonic waveguides through symmetric and asymmetric couplers. When incident light from an optical source has transverse electric (TE) polarization and its wavelength is 1318 or 1554 nm, their propagation losses are between 0.2 and 0.3 dB/μm. Excess losses due to the symmetric couplers are around 0.5 dB, which are smaller than those due to the asymmetric couplers. Additional measurement results indicate that the MISIM waveguide supports a TE-polarized hybrid plasmonic mode. Finally, we explain a process of removing the insulator without affecting the remaining MISIM structure to fabricate ~30-nm-wide nanochannels which may be filled with functional material.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: July 20, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 4, 2012
Published: September 10, 2012

Citation
Min-Suk Kwon, Jin-Soo Shin, Sang-Yung Shin, and Wan-Gyu Lee, "Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal," Opt. Express 20, 21875-21887 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-21875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma, J. A. Schuller, J. White, Y. C. Jun, S. I. Bozhevolnyi, T. Sondergaard, and R. Zia, “Nanoplasmonics: Components, Devices, and Circuits,” in Plasmonic Nanoguides and Circuits, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing Pte. Ltd., 2009).
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  4. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20(5), 5696–5706 (2012). [CrossRef] [PubMed]
  5. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20(7), 7655–7662 (2012). [CrossRef] [PubMed]
  6. C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express20(7), 7771–7776 (2012). [CrossRef] [PubMed]
  7. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  8. R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant, P. Grosse, A. Chelnokov, G. Lerondel, and S. Blaize, “Quantitative analysis and near-field observation of strong coupling between plasmonic nanogap and silicon waveguides,” Appl. Phys. Lett.100(23), 231109 (2012). [CrossRef]
  9. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  10. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010). [CrossRef]
  11. J. A. Summers and R. J. Ram, “Thermal and optical characterization of resonant coupling between surface plasmon polariton and semiconductor waveguides,” Appl. Phys. Lett.99(18), 181118 (2011). [CrossRef]
  12. V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett.11(11), 4907–4911 (2011). [CrossRef] [PubMed]
  13. M.-S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011). [CrossRef] [PubMed]
  14. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  15. S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011). [CrossRef]
  16. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  17. Refractive Index Database, http://refractiveindex.info .
  18. H. S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, and R. E. de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface,” Opt. Express20(8), 8974–8981 (2012). [CrossRef] [PubMed]
  19. J. Buhler, F.-P. Steiner, and H. Baltes, “Silicon dioxide sacrificial layer etching in surface micromachining,” J. Micromech. Microeng.7(1), R1–R13 (1997). [CrossRef]
  20. A. Witvrouw, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE4174, 130–141 (2000). [CrossRef]
  21. C.-Y. Lin, X. Wang, S. Charkravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett.97(9), 093304 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited