OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21888–21895

Huge local field enhancement in perfect plasmonic absorbers

M. Albooyeh and C. R. Simovski  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21888-21895 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we theoretically reveal the huge local field enhancement in a so-called perfect plasmonic absorber. We study the power absorption of light in a planar grid modelled as an effective sheet with zero optical thickness. The key prerequisite of the total absorption is the simultaneous presence of both resonant electric and magnetic modes in the structure. We show that the needed level of the magnetic mode is achievable using the effect of substrate-induced bianisotropy. On the microscopic level this bianisotropy is a factor which results in the huge local field enhancement at the same wavelength where the maximal absorption holds.

© 2012 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: July 30, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: August 30, 2012
Published: September 10, 2012

M. Albooyeh and C. R. Simovski, "Huge local field enhancement in perfect plasmonic absorbers," Opt. Express 20, 21888-21895 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: A direct calculation,” Phys. Rev. Lett. 93, 213905 (2004). [CrossRef]
  2. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  3. K. Emery, “Characterizing thermophotovoltaic cells,” Semicond. Sci. Technol. 18, S228–S231 (2003). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010). [CrossRef]
  5. R. M. A. Azzam, E. Bu-Habib, J. Casset, G. Chassaing, and P. Gravier, “Antireflection of an absorbing substrate by an absorbing thin film at normal incidence,” Appl. Opt. 26, 719–722 (1987). [CrossRef]
  6. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer: Boston, USA, 1999).
  7. W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011). [CrossRef]
  8. N. Liu, M. Mesch, T.s Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]
  9. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19, 17413–17420 (2011). [CrossRef]
  10. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mat. 23, 5410–5414 (2011). [CrossRef]
  11. C.L. Holloway, M.A. Mohamed, E.F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electro-magn. Compat. 47, 853–865 (2005). [CrossRef]
  12. C. R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011). [CrossRef]
  13. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]
  14. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008). [CrossRef]
  15. K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, “Photochemistry on metal nanoparticles,” Chem. Rev. 106, 4301–4320 (2006). [CrossRef]
  16. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  17. B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature 332, 615–617 (1988).
  18. E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier: Oxford, UK, 2009).
  19. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering, Physics and Applications (Eds., Springer: Berlin–Heidelberg–New York, 2006). [CrossRef]
  20. Y. Chu, Mohamad G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4, 2804–2810 (2010). [CrossRef]
  21. M. Albooyeh and C. Simovski, “Substrate-induced bianisotropy in plasmonic grids,” J. Opt. 13, 105102 (2011). [CrossRef]
  22. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano. Lett. 4, 153–158 (2004). [CrossRef]
  23. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000). [CrossRef]
  24. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436 (2002). [CrossRef]
  25. V. V. Klimov and D. V. Guzatov, “Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom,” Phys.Rev. B 75, 024303 (2007). [CrossRef]
  26. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  27. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications (Gordon and Breach Science: Amsterdam, The Netherlands, 2001).
  28. J. C. Vardaxoglu, Frequency Selective Surfaces: Theory and Design (Research Studies Press, Ltd.: Taunton, UK, 1997).
  29. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34, 244–246 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited