OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21917–21923

Narrowband multispectral filter set for visible band

K. Walls, Q. Chen, J. Grant, S. Collins, D.R.S. Cumming, and T.D. Drysdale  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21917-21923 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design, fabricate and characterise a narrowband Fabry-Pérot multispectral filter set for the visible range (400–750nm) that is suitable for integration onto complementary-metal oxide-semiconductor image sensors. We reduce the fabrication steps by fixing the physical cavity length and altering the effective optical length instead. Using electron-beam lithography, a sub-wavelength hole array is patterned in a silicon nitride cavity layer, backfilled with poly(methyl methacrylate), and bounded by aluminium mirrors to create 23 filters with full-width half-maximums of 22–46nm. Additionally, for colourmetric reproduction applications, using as few as 10 filters gives a colour difference (CIEDE2000) of 0.072, better than trichromatic filters.

© 2012 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(330.1730) Vision, color, and visual optics : Colorimetry
(050.2065) Diffraction and gratings : Effective medium theory
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Diffraction and Gratings

Original Manuscript: June 13, 2012
Revised Manuscript: September 3, 2012
Manuscript Accepted: September 4, 2012
Published: September 10, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

K. Walls, Q. Chen, J. Grant, S. Collins, D.R.S. Cumming, and T.D. Drysdale, "Narrowband multispectral filter set for visible band," Opt. Express 20, 21917-21923 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Tilling, G. O’Leary, J. G. Ferwerda, S. D. Jones, G. Fitzgerald, and R. Belford, “Remote sensing to detect nitrogen and water stress in wheat,” in Proc. 13th ASA Conference. N. C. Turner, T. Acuna, and R. C. Johnson, eds. (2006) pp.10–14.
  2. A. A. Gowen, C. P. O’Donnell, P. J. Cullen, G. Downey, and J. M. Frias, “Hyperspectral imaging - an emerging process analytical tool for food quality and safety control,” Trends in Food Sci. and Tech. 18, 590–598 (2007). [CrossRef]
  3. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A: Material Sci. and Process. 106, 309–323 (2012). [CrossRef]
  4. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. of Biomedical Optics Let. 16, 1–3 (2011).
  5. R. M. Levenson, D. T. Lynch, H. Kobayashi, J. M. Backer, and M. V. Backer, “Multiplexing with multispectral imaging: from mice to microscopy,” ILAR Journal 49, 78–88 (2008). [PubMed]
  6. S. Zhi-Xue, L. Jian-Feng, Z. Da-Yong, L. Yong-Quan, L. Yan, H. Li-Xian, L. Hai-Tao, and L. Fei, “Research on LC-based spectral imaging system for visible band,” Proc. SPIE 8181, 1–7 (2011).
  7. A. Mehta, R. C. Rumpf, Z. Roth, and E. G. Johnson, “Nanofabrication of a space-variant optical transmission filter, ” Opt. Lett. 31, 2903–2905 (2006) [CrossRef] [PubMed]
  8. L. Frey, P. Parrein, J. Raby, C. Pelle, D. Herault, M. Marty, and J. Michailos “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073 – 13080 (2011). [CrossRef] [PubMed]
  9. A. Mitra, H. Harutyunyan, S. Palomba, and L. Novotnyo, “Tuning the cavity modes of a fabry-perot resonator using gold nanoparticles,” Opt. Lett. 35, 953 – 955 (2010). [CrossRef] [PubMed]
  10. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JETP 2, 466–475 (1956).
  11. A. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,” IEEE Trans. Semicond. Manuf. 8, 419–431 (1995). [CrossRef]
  12. A. Vial and T. Laroche, “Description of the dispersion properties of metals by means of the critical points model and the application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys 40, 7152–7158 (2007). [CrossRef]
  13. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, (2012). [CrossRef] [PubMed]
  14. H. Zhou, C. Sim, A. Glidle, C. Hodson, R. Kinsey, and C. D. W. Wilkinson, Properties of Silicon Nitride by Room-temperature Inductively Coupled Plasma Deposition (Wiley-VCH Verlag GmbH and Co. KGaA, 2005) 77–86.
  15. J. H. Davies, The Physics of Low-dimensional Semiconductors : An Introduction (Cambridge University Press, 1998).
  16. E. Hecht, Optics (Addison-Wesley, 2002).
  17. G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data and mathematical observations,” Color Res. Appl. 30, 21–30 (2005). [CrossRef]
  18. R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, “Color image processing pipeline,” IEEE Signal Process. Mag. 22, 34–34 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited