OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21946–21952

Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber

Marta S. Ferreira, Jörg Bierlich, Jens Kobelke, Kay Schuster, José L. Santos, and Orlando Frazão  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 21946-21952 (2012)
http://dx.doi.org/10.1364/OE.20.021946


View Full Text Article

Enhanced HTML    Acrobat PDF (1108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high sensitivity Fabry-Pérot (FP) strain sensor based on hollow-core ring photonic crystal fiber was investigated. A low-finesse FP cavity was fabricated by splicing a section of hollow-core ring photonic crystal fiber between two standard single mode fibers. The geometry presents a low cross section area of silica enabling to achieve high strain sensitivity. Strain measurements were performed by considering the FP cavity length in a range of 1000 μm. The total length of the strain gauge at which strain was applied was also studied for a range of 900 mm. The FP cavity length variation highly influenced the strain sensitivity, and for a length of 13 μm a sensitivity of 15.4 pm/με was attained. Relatively to the strain gauge length, its dependence to strain sensitivity is low. Finally, the FP cavity presented residual temperature sensitivity (~0.81 pm/°C).

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: July 16, 2012
Revised Manuscript: August 22, 2012
Manuscript Accepted: August 23, 2012
Published: September 11, 2012

Citation
Marta S. Ferreira, Jörg Bierlich, Jens Kobelke, Kay Schuster, José L. Santos, and Orlando Frazão, "Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber," Opt. Express 20, 21946-21952 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-21946


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Chen and H. F. Taylor, “Multiplexed fiber Fabry-Perot temperature sensor system using white-light interferometry,” Opt. Lett.27(11), 903–905 (2002). [CrossRef] [PubMed]
  2. M. Linec and D. Donlagić, “Quasi-distributed long-gauge fiber optic sensor system,” Opt. Express17(14), 11515–11529 (2009). [CrossRef] [PubMed]
  3. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot cavity based on a suspended-core fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett.21(17), 1229–1231 (2009). [CrossRef]
  4. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from −200 to 900 °C,” Smart Mater. Struct.1(3), 237–242 (1992). [CrossRef]
  5. G. Z. Xiao, A. Adnet, Z. Zhang, Z. Lu, and C. P. Grover, “Fiber-optic Fabry-Perot interferometric gas-pressure sensors embedded in pressure fittings,” Microw. Opt. Technol. Lett.42(6), 486–489 (2004). [CrossRef]
  6. Y. Jiang and C. Tang, “High-finesse micro-lens fiber-optic extrinsic Fabry-Perot interferometric sensors,” Smart Mater. Struct.17(5), 055013 (2008). [CrossRef]
  7. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett.33(6), 536–538 (2008). [CrossRef] [PubMed]
  8. K. Zhou, Z. Yan, L. Zhang, and I. Bennion, “Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel,” Opt. Express19(12), 11769–11779 (2011). [CrossRef] [PubMed]
  9. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett.32(21), 3071–3073 (2007). [CrossRef] [PubMed]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008). [CrossRef] [PubMed]
  11. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett.34(16), 2441–2443 (2009). [CrossRef] [PubMed]
  12. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express20(7), 7112–7118 (2012). [CrossRef] [PubMed]
  13. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett.32(18), 2662–2664 (2007). [CrossRef] [PubMed]
  14. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  15. D.-W. Duan, Y.-J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B29(5), 912–915 (2012). [CrossRef]
  16. O. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Strain sensitivity control of fiber Bragg grating structures with fused tapers,” Appl. Opt.46(36), 8578–8582 (2007). [CrossRef] [PubMed]
  17. O. Frazão, J. P. Carvalho, and H. M. Salgado, “Low loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett.46(2), 172–174 (2005). [CrossRef]
  18. D. H. Wang, S. J. Wang, and P. G. Jia, “In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields,” Opt. Lett.37(11), 2046–2048 (2012). [CrossRef] [PubMed]
  19. Y.-J. Rao, M. Deng, D.-W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).
  20. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express17(21), 18669–18675 (2009). [CrossRef] [PubMed]
  21. M. S. Ferreira, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Spatial optical filter sensor based on hollow-core silica tube,” Opt. Lett.37(5), 890–892 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited