OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21953–21967

Lens-less surface second harmonic imaging

Krystal L. Sly, Trang T. Nguyen, and John C. Conboy  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21953-21967 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lens-less surface second harmonic generation imaging (SSHGI) is used to image an SHG active molecule, (S)-( + )-1,1’-bi-2-naphthol (SBN), incorporated into a lipid bilayer patterned with the 1951 United States Air Force resolution test target. Data show the coherent plane-wave nature of SHG allows direct imaging without the aid of a lens system. Lens-less SSHGI readily resolves line-widths as small as 223 μm at an object-image distance of 7.6 cm and line-widths of 397 μm at distances as far as 30 cm. Lens-less SSHGI simplifies the detection method, raises photon collection efficiency, and expands the field-of-view. These advantages allow greater throughput and make lens-less SSHGI a potentially valuable detection method for biosensors and medical diagnostics.

© 2012 OSA

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.2970) Imaging systems : Image detection systems
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6490) Optics at surfaces : Spectroscopy, surface

ToC Category:
Imaging Systems

Original Manuscript: July 17, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 7, 2012
Published: September 11, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Krystal L. Sly, Trang T. Nguyen, and John C. Conboy, "Lens-less surface second harmonic imaging," Opt. Express 20, 21953-21967 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961). [CrossRef]
  2. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174(3), 813–822 (1968). [CrossRef]
  3. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989). [CrossRef]
  4. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54(1), 63–66 (1985). [CrossRef] [PubMed]
  5. D. Heskett, K. J. Song, A. Burns, E. W. Plummer, and H. L. Dai, “Coverage dependent phase transition of pyridine on silver(110) observed by second harmonic generation,” J. Chem. Phys. 85(12), 7490–7492 (1986). [CrossRef]
  6. R. M. Corn, M. Romagnoli, M. D. Levenson, and M. R. Philpott, “The potential dependence of surface plasmon-enhanced second-harmonic generation at thin film silver electrodes,” Chem. Phys. Lett. 106(1–2), 30–35 (1984). [CrossRef]
  7. J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chem. Phys. Lett. 381(5-6), 705–709 (2003). [CrossRef]
  8. J. M. Hicks and T. Petralli-Mallow, “Nonlinear optics of chiral surface systems,” Appl. Phys. B 68(3), 589–593 (1999). [CrossRef]
  9. J. S. Salafsky and K. B. Eisenthal, “Protein adsorption at interfaces detected by second harmonic generation,” J. Phys. Chem. B 104(32), 7752–7755 (2000). [CrossRef]
  10. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12(3), 318–322 (1974). [CrossRef]
  11. Y. R. Shen, “Surface second harmonic generation: a new technique for surface studies,” Annu. Rev. Mater. Sci. 16(1), 69–86 (1986). [CrossRef]
  12. A. Motreff, G. Raffy, A. Del Guerzo, C. Belin, M. Dussauze, V. Rodriguez, and J.-M. Vincent, “Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers,” Chem. Commun. (Camb.) 46(15), 2617–2619 (2010). [CrossRef] [PubMed]
  13. M. Iwamoto and T. Manaka, “Probing and modeling of carrier motion in organic devices by optical second harmonic generation,” Thin Solid Films 519(3), 961–963 (2010). [CrossRef]
  14. M. A. Kriech and J. C. Conboy, “Imaging chirality with surface second harmonic generation microscopy,” J. Am. Chem. Soc. 127(9), 2834–2835 (2005). [CrossRef] [PubMed]
  15. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011). [CrossRef] [PubMed]
  16. C.-S. Liao, Z.-Y. Zhuo, J.-Y. Yu, Y.-Y. Tzeng, S.-W. Chu, S.-F. Yu, and P.-H. G. Chao, “Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging,” Appl. Phys. Lett. 98(15), 153703 (2011).
  17. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, and L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65(2), 672–679 (1993). [CrossRef] [PubMed]
  18. I. Ben-Oren, G. Peleg, A. Lewis, B. Minke, and L. Loew, “Infrared nonlinear optical measurements of membrane potential in photoreceptor cells,” Biophys. J. 71(3), 1616–1620 (1996). [CrossRef] [PubMed]
  19. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25(5), 320–322 (2000). [CrossRef] [PubMed]
  20. A. Srivastava and K. B. Eisenthal, “Kinetics of molecular transport across a liposome bilayer,” Chem. Phys. Lett. 292(3), 345–351 (1998). [CrossRef]
  21. E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79(2), 898–903 (2000). [CrossRef] [PubMed]
  22. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, “Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6700–6704 (1999). [CrossRef] [PubMed]
  23. T. T. Nguyen and J. C. Conboy, “High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging,” Anal. Chem. 83(15), 5979–5988 (2011). [CrossRef] [PubMed]
  24. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  25. A. Schwarz, A. Weiss, D. Fixler, Z. Zalevsky, V. Mico, and J. Garcia, “One-dimensional wavelength multiplexed microscope without objective lens,” Opt. Commun. 282(14), 2780–2786 (2009). [CrossRef]
  26. P. F. Goldsmith, Quasioptical systems: Gaussian Beam Quasioptical Propagation and Applications. (IEEE Press, 1998).
  27. A. E. Siegman, An Introduction to Lasers and Masers. (McGraw Hill, 1971).
  28. B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, “Determination of the nonlinear optical susceptibility χ (2) of surface layers by sum and difference frequency generation in reflection and transmission,” Appl. Phys. B 38(2), 107–116 (1985). [CrossRef]
  29. R. G. W. A. M. Steinberg, “Coherence” in Access Science (McGraw Hill, 2008).
  30. G. Tyras, Radiation and Propagationof Electromagnetic Waves. (Academic Press, 1969).
  31. Y. R. Shen, The Principles of Nonlinear Optics. (John Wiley & Sons, Inc., 1984).
  32. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966). [CrossRef] [PubMed]
  33. R. Masina, X. D. Zhu, A. N. Parikh, R. Bruch, and J. P. Landry, “Biophotonic studies on lipid membranes using oblique incidence reflectivity difference (OI-RD) ellipsometry,” Proc. SPIE 6095, 60950T (2006).
  34. G. R. Fowles, Introduction to Modern Optics, Second ed. (Holt, Rinehart and Winston, Inc., 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited