OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21968–21976

Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array

He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Hui-Yong Zeng  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21968-21976 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

© 2012 OSA

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 23, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 6, 2012
Published: September 11, 2012

He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Hui-Yong Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Opt. Express 20, 21968-21976 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  6. J. Zhao, Y. Feng, B. Zhu, and T. Jiang, “Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms,” Opt. Express16(22), 18057–18066 (2008). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  8. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  10. Y. Q. Pang, H. F. Cheng, Y. J. Zhou, Z. G. Li, and J. Wang, “Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates,” Opt. Express20(11), 12515–12520 (2012). [CrossRef] [PubMed]
  11. N. Engheta and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  12. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2006).
  13. H. X. Xu, G. M. Wang, and J. Q. Gong, “Compact dual-band zeroth-order resonance antenna,” Chin. Phys. Lett.29(1), 014101 (2012). [CrossRef]
  14. R. Marques, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, 2008).
  15. H. X. Xu, G. M. Wang, and J. G. Liang, “Novel composite right-/left-handed transmission lines using fractal geometry and compact microwave devices application,” Radio Sci.46(5), RS5008 (2011). [CrossRef]
  16. L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, “A broadband and high-gain metamaterial microstrip antenna,” Appl. Phys. Lett.96(16), 164101 (2010). [CrossRef]
  17. M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications,” IEEE Trans. Antenn. Propag.58(9), 2894–2902 (2010). [CrossRef]
  18. X. M. Yang, X. G. Liu, X. Y. Zhou, and T. J. Cui, “Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials,” IEEE Antennas Wirel. Propag. Lett.11, 389–391 (2012). [CrossRef]
  19. F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antenn. Propag.51(10), 2936–2946 (2003). [CrossRef]
  20. M. Coulombe, K. S. Farzaneh, and C. Caloz, “Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances,” IEEE Trans. Antenn. Propag.58(4), 1076–1086 (2010). [CrossRef]
  21. C.-Y. Chiu, C.-H. Cheng, R. D. Murch, and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements,” IEEE Trans. Antenn. Propag.55(6), 1732–1738 (2007). [CrossRef]
  22. M. M. Bait-Suwailam, O. F. Siddiqui, and O. M. Ramahi, “Mutual coupling reduction between microstrip patch antennas using elotted-complementary split-ring resonators,” IEEE Antennas Wireless Propag.9, 876–878 (2010). [CrossRef]
  23. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008). [CrossRef] [PubMed]
  24. H. X. Xu, G. M. Wang, and J. G. Liang, “Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry,” Radioengineering20, 312–316 (2011).
  25. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Trans. Microw. Theory Tech.53(4), 1451–1461 (2005). [CrossRef]
  26. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited