OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 21977–21991

Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators

Ryan M. Camacho  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 21977-21991 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The dispersion profile and bi-photon spectra of two illustrative examples are given, emphasizing the physical origin of the effects leading to the conditions for angular momentum and energy conservation. A scheme is proposed in which widely spaced narrowband entangled photons may be produced through a four-wave mixing process in a chip-scale ring resonator. The entangled photon pairs are found to conserve energy and momentum in the four-wave mixing interaction, even though both photon modes lie in spectral regions of steep angular group velocity dispersion.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

Original Manuscript: July 24, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 17, 2012
Published: September 11, 2012

Ryan M. Camacho, "Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators," Opt. Express 20, 21977-21991 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  2. T. C. Ralph and G. J. Pryde, “Optical quantum computation,” in Prog. Optics,vol. 54, E. Wolf, ed. (Elsevier Science2010), pp. 209–269. [CrossRef]
  3. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731–734 (2003). [CrossRef] [PubMed]
  4. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009). [CrossRef]
  5. K. Akiba, K. Kashiwagi, M. Arikawa, and M. Kozuma, “Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process,” New J. Phys. 11, 013049 (2009). [CrossRef]
  6. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric Down-Conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999). [CrossRef]
  7. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009). [CrossRef] [PubMed]
  8. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010). [CrossRef] [PubMed]
  9. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19, 1470–1483 (2011). [CrossRef] [PubMed]
  10. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983 (2002). [CrossRef]
  11. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006). [CrossRef] [PubMed]
  12. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007). [CrossRef]
  13. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber source of Polarization-Entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  14. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of polarization entangledphoton pairs using silicon wirewaveguide,” Opt. Express 16, 5721–5727 (2008). [CrossRef] [PubMed]
  15. K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008). [CrossRef] [PubMed]
  16. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010). [CrossRef]
  18. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010). [CrossRef]
  19. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaa, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun 1, 29 (2010). [CrossRef] [PubMed]
  20. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based optical frequency combs,” Science 332, 555 –559 (2011). [CrossRef] [PubMed]
  21. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011). [CrossRef]
  22. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100GHz repetition rates,” Opt. Lett. 37, 875–877 (2012). [CrossRef] [PubMed]
  23. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554–556 (2000). [CrossRef]
  24. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008). [CrossRef] [PubMed]
  25. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010). [CrossRef]
  26. Y. K. Chembo, D. V. Strekalov, and N. Yu, “Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators,” Phys. Rev. Lett. 104, 103902 (2010). [CrossRef] [PubMed]
  27. M. Scholz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal/idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282, 3518–3523 (2009). [CrossRef]
  28. D. Walls and G. J. Milburn, Quantum Optics (Springer, 2007).
  29. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Optics 21, 1069–1072 (1982). [CrossRef]
  30. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]
  31. D. A. B. Miller, Quantum Mechanics for Scientists and Engineers (Cambridge University Press, 2008). [CrossRef]
  32. P. Milonni, “Field quantization and radiative processes in dispersive dielectric media,” J. Mod. Optic. 42, 1991–2004 (1995). [CrossRef]
  33. B. Huttner, J. J. Baumberg, and S. M. Barnett, “Canonical quantization of light in a linear dielectric,” Europhys. Lett. 16, 177–182 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited