OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22012–22017

Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules

Torsten Beck, Steffen Schloer, Tobias Grossmann, Timo Mappes, and Heinz Kalt  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22012-22017 (2012)
http://dx.doi.org/10.1364/OE.20.022012


View Full Text Article

Enhanced HTML    Acrobat PDF (1822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a method for a highly flexible arrangement of polymeric high-Q whispering gallery mode resonators. Parallel on-chip fabricated goblet resonators are detached from the substrate by bonding a gold wire to the field-free center of their polymeric cavity. This enables the precise control of the resonator’s spatial position. The modal spectrum of the detached resonator reveals preservation of its high optical quality. Manipulation of the resonators’ position allows for designing coupled resonators geometries and tuning the coupling properties dynamically after batch fabrication. The properties of the modal spectrum evidence the successful optical coupling.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: September 6, 2012
Published: September 11, 2012

Citation
Torsten Beck, Steffen Schloer, Tobias Grossmann, Timo Mappes, and Heinz Kalt, "Flexible coupling of high-Q goblet resonators for formation of tunable photonic molecules," Opt. Express 20, 22012-22017 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature443(7112), 671–674 (2006). [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol.20(11), 1968–1975 (2002). [CrossRef]
  4. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klink-hammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett.97(6), 063304 (2010). [CrossRef]
  5. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010). [CrossRef]
  6. C.-Y. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 134–142 (2006). [CrossRef]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.80(21), 4057–4059 (2002). [CrossRef]
  8. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  9. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]
  10. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys.2(12), 849–855 (2006). [CrossRef]
  11. S. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. B23(8), 1565–1573 (2006). [CrossRef]
  12. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photonic. Tech. L.12(3), 320–322 (2000). [CrossRef]
  13. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett.31(4), 456–458 (2006). [CrossRef] [PubMed]
  14. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett.31(7), 921–923 (2006). [CrossRef] [PubMed]
  15. M. A. Popovíc, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett.31(17), 2571–2573 (2006). [CrossRef] [PubMed]
  16. X. Wu, H. Li, L. Liu, and L. Xu, “Unidirectional single-frequency lasing from a ring-spiral coupled microcavity laser,” Appl. Phys. Lett.93(8), 081105 (2008). [CrossRef]
  17. S. Ishii and T. Baba, “Bistable lasing in twin microdisk photonic molecules,” Appl. Phys. Lett.87(18), 181102 (2005). [CrossRef]
  18. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-Level system,” Phys. Rev. Lett.104(8), 083901 (2010). [CrossRef] [PubMed]
  19. M. Hossein-Zadeh and K. J. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Opt. Express15(1), 166–175 (2007). [CrossRef] [PubMed]
  20. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett.96(1), 013303 (2010). [CrossRef]
  21. D. Smith, H. Chang, and K. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B20(9), 1967–1974 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited