OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22048–22062

Development of a scalable image formation pipeline for multiscale gigapixel photography

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, and M. E. Gehm  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22048-22062 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (15322 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the image formation pipeline developed to efficiently form gigapixel-scale imagery generated by the AWARE-2 multiscale camera. The AWARE-2 camera consists of 98 “microcameras” imaging through a shared spherical objective, covering a 120° x 50° field of view with approximately 40 microradian instantaneous field of view (the angular extent of a pixel). The pipeline is scalable, capable of producing imagery ranging in scope from “live” one megapixel views to full resolution gigapixel images. Architectural choices that enable trivially parallelizable algorithms for rapid image formation and on-the-fly microcamera alignment compensation are discussed.

© 2012 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4190) Imaging systems : Multiple imaging

ToC Category:
Image Processing

Original Manuscript: May 30, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 6, 2012
Published: September 11, 2012

Virtual Issues
October 2, 2012 Spotlight on Optics

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady, and M. E. Gehm, "Development of a scalable image formation pipeline for multiscale gigapixel photography," Opt. Express 20, 22048-22062 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17(13), 10659–10674 (2009). [CrossRef] [PubMed]
  2. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51(20), 4691–4702 (2012). [CrossRef] [PubMed]
  3. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50(30), 5824–5833 (2011). [CrossRef] [PubMed]
  4. H. S. Son, D. L. Marks, J. Hahn, J. Kim, and D. J. Brady, “Design of a spherical focal surface using close-packed relay optics,” Opt. Express 19(17), 16132–16138 (2011). [CrossRef] [PubMed]
  5. R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010).
  6. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Commun. ACM 51(1), 107–113 (2008). [CrossRef]
  7. H. Haggrén, “Photogrammetric machine vision,” Opt. Lasers Eng. 10(3-4), 265–286 (1989). [CrossRef]
  8. C. Fraser, “Digital camera self-calibration,” ISPRS J. Photogramm. Remote Sens. 52(4), 149–159 (1997). [CrossRef]
  9. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, (Prentice Hall, 1993), Chapter 7.
  10. R. Willson and S. Shafer, “What is the center of the image?” J. Opt. Soc. Am. A 11(11), 2946–2955 (1994). [CrossRef]
  11. R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca, and A. Lumsdaine, “Open MPI: a high-performance, heterogeneous MPI,” in Proceedings of IEEE International Conference on Cluster Computing (IEEE, 2006),1–9, 25–28.
  12. NVIDIA Corporation, 2012. NVIDIA GeForce GTX 680 [White paper]. Retrieved from http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
  13. R. Szeliski and H.-Y. Shum, “Creating full view panoramic image mosaics and environment maps,” in Proceedings of SIGGRAPH 1997, (New York, NY, 1997), 251–258.
  14. M. Brown and D. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis. 74(1), 59–73 (2007). [CrossRef]
  15. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  16. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24(4), 325–376 (1992). [CrossRef]
  17. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004). [CrossRef]
  18. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3), 346–359 (2008). [CrossRef]
  19. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486(7403), 386–389 (2012). [CrossRef] [PubMed]
  20. J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen, “Capturing and viewing gigapixel images,” in Proceedings of SIGGRAPH 2007 (New York, NY, 2007).
  21. M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl. 31(1), 49–61 (2011). [CrossRef]
  22. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (2005).
  23. E. M. Vera, D. R. Golish, D. S. Kittle, D. J. Brady, and M. E. Gehm, “A parallel processing approach for efficient rendering of high dynamic-range gigapixel images,” in preparation for submission to Image and Vision Computing (2012).
  24. O. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” in IEEE International Conference on Computational Photography (IEEE, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited