OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22063–22078

Quantitative imaging of the optical near field

Paul Kühler, F. Javier García de Abajo, Philipp Leiprecht, Andreas Kolloch, Javier Solis, Paul Leiderer, and Jan Siegel  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22063-22078 (2012)
http://dx.doi.org/10.1364/OE.20.022063


View Full Text Article

Enhanced HTML    Acrobat PDF (2974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When exposing small particles on a substrate to a light plane wave, the scattered optical near field is spatially modulated and highly complex. We show, for the particular case of dielectric microspheres, that it is possible to image these optical near-field distributions in a quantitative way. By placing a single microsphere on a thin film of the photosensitive phase change material Ge2Sb5Te5 and exposing it to a single short laser pulse, the spatial intensity modulation of the near field is imprinted into the film as a pattern of different material phases. The resulting patterns are investigated by using optical as well as high-resolution scanning electron microscopy. Quantitative information on the local optical near field at each location is obtained by calibrating the material response to pulsed laser irradiation. We discuss the influence of polarization and angle of incidence of the laser beam as well as particle size on the field distribution. The experimental results are in good quantitative agreement with a model based on a rigorous solution of Maxwell’s equations. Our results have potential application to near-field optical lithography and experimental determination of near fields in complex nanostructures.

© 2012 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(290.0290) Scattering : Scattering
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 7, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 26, 2012
Published: September 12, 2012

Citation
Paul Kühler, F. Javier García de Abajo, Philipp Leiprecht, Andreas Kolloch, Javier Solis, Paul Leiderer, and Jan Siegel, "Quantitative imaging of the optical near field," Opt. Express 20, 22063-22078 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ohtsu, Optical Near Fields: Introduction to Classical and Quantum Theories of Electromagnetic Phenomena at the Nanoscale (Springer, 2004). [PubMed]
  2. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys.2, 44–47 (2005). [CrossRef]
  3. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett.96, 261103 (2010). [CrossRef]
  4. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol.3, 413–417 (2008). [CrossRef] [PubMed]
  5. H. J. Lezec, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002). [CrossRef] [PubMed]
  6. A. Kramer, W. Trabesinger, B. Hecht, and U. P. Wild, “Optical near-field enhancement at a metal tip probed by a single fluorophore,” Appl. Phys. Lett.80, 1652–1654 (2002). [CrossRef]
  7. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011). [CrossRef] [PubMed]
  8. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A86, 313–314 (2007). [CrossRef]
  9. R. Morarescu, L. Englert, B. Kolaric, P. Damman, R. A. L. Vallee, T. Baumert, F. Hubenthal, and F. Träger, “Tuning nanopatterns on fused silica substrates: a theoretical and experimental approach,” J. Mater. Chem.21, 4076–4081, (2011). [CrossRef]
  10. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys.96, 6845–6850 (2004). [CrossRef]
  11. A. Pereira, D. Grojo, M. Chaker, P. Delaporte, D. Guay, and M. Sentis, “Laser-fabricated porous alumina membranes for the preparation of metal nanodot arrays,” Small4, 572–576 (2008). [CrossRef] [PubMed]
  12. P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett.85, 5370–5372 (2004). [CrossRef]
  13. P. Kühler, F. J. García de Abajo, J. Solis, M. Mosbacher, P. Leiderer, C. Afonso, and J. Siegel, “Imprinting the optical near field of microstructures with nanometer resolution,” Small5, 1825–1829 (2009). [CrossRef] [PubMed]
  14. J. Siegel, D. Puerto, J. Solis, F. J. García de Abajo, C. N. Afonso, M. Longo, C. Wiemer, M. Fanciulli, P. Kühler, M. Mosbacher, and P. Leiderer, “Ultraviolet optical near-fields of microspheres imprinted in phase change films,” Appl. Phys. Lett.96, 193108 (2010). [CrossRef]
  15. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6, 824–832 (2007). [CrossRef] [PubMed]
  16. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett.21, 1450–1453 (1968). [CrossRef]
  17. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb5Te5 films,” J. Appl. Phys.89, 3168–3176 (2001). [CrossRef]
  18. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett.89, 041108 (2006). [CrossRef]
  19. B. Lee, J. Abelson, S. Bishop, D. Kang, B. Cheong, and K. Kim, “Investigation of the optical and electronic properties of Ge2Sb5Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys.97, 1–8 (2005). [CrossRef]
  20. F. J. García de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett.95, 067403 (2005). [CrossRef]
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330, 377–445 (1908). [CrossRef]
  22. J. M. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett.7, 196–198 (1982). [CrossRef] [PubMed]
  23. B. S. Luk’Yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys. A: Mater. Sci. Process.79, 747–751 (2004). [CrossRef]
  24. J. Siegel, W. Gawelda, D. Puerto, C. Dorronsoro, J. Solis, C. N. Afonso, J. C. G. de Sande, R. Bez, A. Pirovano, and C. Wiemer, “Amorphization dynamics of Ge2Sb5Te5 films upon nano- and femtosecond laser pulse irradiation,” J. Appl. Phys.103, 023516 (2008). [CrossRef]
  25. H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A17, 802–813 (2000). [CrossRef]
  26. T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanosci.7, 1587–1595 (2010). [CrossRef]
  27. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun.113, 49–77 (1998). [CrossRef]
  28. F. J. García de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a probe of two-dimensional photonic crystals,” Phys. Rev. B68, 205105 (2003). [CrossRef]
  29. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B60, 6086–6102 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited