OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22087–22094

A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays

Ying Qiu, Hong-Chen Hao, Jing Zhou, and Ming Lu  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22087-22094 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Si nanocone arrays are formed on Si(100) by Ar+ ion sputtering combined with metal ion co-deposition. The aspect ratio of Si cone is found to increases steadily with increasing sample temperature, but decreases slowly with increasing ion dose. Furthermore, the height and base diameter of Si cone increase monotonously with increasing dose at a constant temperature. The absorptivity increases in general with increasing aspect ratio and height. A close to unity and all-solar-spectrum absorption by the nanostructured Si is finally achieved, with the absorbance for λ = 350 to 1100 nm being higher than 96%, and that for λ = 1100 to 2000 nm higher than 92%. Photocurrents for different Si samples are also investigated.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(300.1030) Spectroscopy : Absorption
(160.4236) Materials : Nanomaterials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Solar Energy

Original Manuscript: June 28, 2012
Manuscript Accepted: August 23, 2012
Published: September 12, 2012

Ying Qiu, Hong-Chen Hao, Jing Zhou, and Ming Lu, "A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays," Opt. Express 20, 22087-22094 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998). [CrossRef]
  2. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1852 (2001). [CrossRef]
  3. T. G. Kim, J. M. Warrender, and M. J. Aziz, “Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur,” Appl. Phys. Lett. 88(24), 241902 (2006). [CrossRef]
  4. K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92(16), 163103 (2008). [CrossRef]
  5. M. Tabbal, T. Kim, D. N. Woolf, B. Shin, and M. J. Aziz, “Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing,” Appl. Phys., A Mater. Sci. Process. 98(3), 589–594 (2010). [CrossRef]
  6. F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2), A207–A220 (2010). [CrossRef] [PubMed]
  7. Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express 19(S5), A1051–A1056 (2011). [CrossRef] [PubMed]
  8. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  9. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  10. L. Hu and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  11. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications,” Nano Lett. 8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  12. J. Zhou, M. Hildebrandt, and M. Lu, “Self-organized antireflecting nano-cone arrays on Si (100) induced by ion bombardment,” J. Appl. Phys. 109(5), 053513 (2011). [CrossRef]
  13. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun 3, 692 (2012). [CrossRef] [PubMed]
  14. H. S. Seo, X. P. Li, H. D. Um, B. Y. Yoo, J. H. Kim, K. P. Kim, Y. W. Cho, and J. H. Lee, “Fabrication of precisely controlled silicon wire and cone arrays by electrochemical etching,” Mater. Lett. 63(29), 2567–2569 (2009). [CrossRef]
  15. L. W. Yu, K. J. Chen, J. Song, J. Xu, W. Li, H. M. Li, M. Wang, X. F. Li, and X. F. Huang, “Self-assembled Si Quantum-Ring Structures on a Si Substrate by Plasma-Enhanced Chemical Vapor Deposition Based on a Growth-Etching Competition Mechanism,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1577–1581 (2007). [CrossRef]
  16. N. G. Shang, X. L. Ma, C. P. Liu, I. Bello, and S. T. Lee, “Arrays of Si cones prepared by ion beams: growth mechanisms,” Phys. Status Solidi A 207(2), 309–315 (2010). [CrossRef]
  17. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, “Spontaneous Pattern Formation on Ion Bombarded Si(001),” Phys. Rev. Lett. 82(11), 2330–2333 (1999). [CrossRef]
  18. G. Ozaydin, A. S. Ozcan, Y. Y. Wang, K. F. Ludwig, H. Zhou, R. L. Headrick, and D. P. Siddons, “Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment,” Appl. Phys. Lett. 87(16), 163104 (2005). [CrossRef]
  19. B. Ziberi, M. Cornejo, F. Frost, and B. Rauschenbach, “Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering,” J. Phys. Condens. Matter 21(22), 224003 (2009). [CrossRef] [PubMed]
  20. J. Zhou, S. Facsko, M. Lu, and W. Möller, “Nanopatterning of Si surfaces by normal incident ion erosion: influence of metal incorporation on surface morphology evolution,” J. Appl. Phys. 109(10), 104315 (2011). [CrossRef]
  21. J. Zhou and M. Lu, “Mechanism of Fe impurity motivated ion-nanopatterning of Si (100) surfaces,” Phys. Rev. B 82(12), 125404 (2010). [CrossRef]
  22. J. A. Sánchez-García, L. Vázquez, R. Gago, A. Redondo-Cubero, J. M. Albella, and Z. S. Czigány, “Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots,” Nanotechnology 19(35), 355306 (2008). [CrossRef] [PubMed]
  23. S. Macko, F. Frost, B. Ziberi, D. F. Förster, and T. Michely, “Is keV ion-induced pattern formation on Si(001) caused by metal impurities?” Nanotechnology 21(8), 085301 (2010). [CrossRef] [PubMed]
  24. J. S. Lai, L. Chen, X. N. Fu, J. Sun, Z. F. Ying, J. D. Wu, and N. Xu, “Effects of the experimental conditions on the growth of crystalline ZnSe nano-needles by pulsed laser deposition,” Appl. Phys., A Mater. Sci. Process. 102(2), 477–483 (2011). [CrossRef]
  25. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6(4), 2390–2395 (1988). [CrossRef]
  26. M. C. Bost and J. E. Mahan, “Optical properties of semiconducting iron disilicide thin films,” J. Appl. Phys. 58(7), 2696–2703 (1985). [CrossRef]
  27. M. Oživold, V. Boháč, V. Gašparík, G. Leggieri, Š. Luby, A. Luches, E. Majková, and P. Mrafko, “The optical band gap of semiconducting iron disilicide thin films,” Thin Solid Films 263(1), 92–98 (1995). [CrossRef]
  28. H. Lange, W. Henrion, F. Fenske, T. Zettler, J. Schumann, and S. Teichert, “Optical Interband Properties of Some Semiconducting Silicides,” Phys. Status Solidi B 194(1), 231–240 (1996). [CrossRef]
  29. V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V. N. Antonov, O. Jepsen, O. K. Andersen, and V. V. Nemoshkalenko, “Theory and experiment on the optical properties of CrSi2.,” Phys. Rev. B Condens. Matter 46(15), 9380–9389 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited