OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22102–22117

Object reconstruction in block-based compressive imaging

Jun Ke and Edmund Y. Lam  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22102-22117 (2012)
http://dx.doi.org/10.1364/OE.20.022102


View Full Text Article

Enhanced HTML    Acrobat PDF (5830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A block-based compressive imaging (BCI) system using sequential architecture is presented in this paper. Feature measurements are collected using the principal component analysis (PCA) projection. The linear Wiener operator and a nonlinear method based on the Field-of-Expert (FoE) prior model are used for object reconstruction. Experimental results are given to demonstrate the superior reconstruction performance of the FoE-based method over the Wiener operator. In addition, the effects of system parameters, such as the object block size, the number of features per block, and the noise level to the BCI reconstruction performance are discussed with different kinds of objects. Then an optimal block size is defined and studied for BCI.

© 2012 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.2990) Imaging systems : Image formation theory
(110.1758) Imaging systems : Computational imaging

ToC Category:
Image Processing

History
Original Manuscript: July 2, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 6, 2012
Published: September 12, 2012

Citation
Jun Ke and Edmund Y. Lam, "Object reconstruction in block-based compressive imaging," Opt. Express 20, 22102-22117 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006). [CrossRef]
  2. E. J. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, (European Mathematical Society, 2006), pp. 1433–1452.
  3. M. A. Neifeld and J. Ke, “Optical architectures for compressive imaging,” Appl. Opt.46, 5293–5303 (2007). [CrossRef] [PubMed]
  4. M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007). [CrossRef] [PubMed]
  5. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17, 13040–13049 (2009). [CrossRef] [PubMed]
  6. H. Di, K. Zheng, X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, T.-C. Poon, and C. Zhou, “Multiple-image encryption by compressive holography,” Appl. Opt.51, 1000–1009 (2012). [CrossRef] [PubMed]
  7. X. Zhang and E. Y. Lam, “Sectional image reconstruction in optical scanning holography usingcompressed sensing,” in IEEE International Conference on Image Processing, (IEEE, 2010), pp. 3349–3352. [CrossRef]
  8. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express15, 14013–14027 (2007). [CrossRef] [PubMed]
  9. Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A27, 1638–1646 (2010). [CrossRef]
  10. J. Ke, P. Shankar, and M. A. Neifeld, “Distributed imaging using an array of compressive cameras,” Opt. Commun.282, 185–197 (2009). [CrossRef]
  11. J. Ke, A. Ashok, and M. A. Neifeld, “Block-wise motion detection using compressive imaging system,” Opt. Commun.284, 1170–1180 (2011). [CrossRef]
  12. P. K. Baheti and M. A. Neifeld, “Recognition using information-optimal adaptive feature-specific imaging,” J. Opt. Soc. Am. A26, 1055–1070 (2009). [CrossRef]
  13. X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A27, 1630–1637 (2010). [CrossRef]
  14. D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.26, 301–321 (2009). [CrossRef]
  15. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory53, 4655–4666 (2007). [CrossRef]
  16. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992). [CrossRef]
  17. J. Ke, A. Ashok, and M. A. Neifeld, “Object reconstruction from adaptive compressive measurements in feature-specific imaging,” Appl. Opt.49, H27–H39 (2010). [CrossRef] [PubMed]
  18. J. Ke and E. Y. Lam, “Nonlinear image reconstruction in block-based compressive imaging,” in IEEE International Symposium on Circuits and Systems, (IEEE, 2012), pp. 2917–2920.
  19. S.-H. Cho, S.-H. Lee, N. Gung-Chan, S. Jun-Oh, J.-H. Son, H. Park, and C.-B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express19, 16401–16409 (2011). [CrossRef] [PubMed]
  20. L. Gan, “Block compressed sensing of natural images,” in 2007 15th International Conference on Digital Signal Processing, (IEEE, 2007), pp. 403–406. [CrossRef]
  21. L. Sun, X. Wen, M. Lei, H. Xu, J. Zhu, and Y. Wei, “Signal reconstruction based on block compressed sensing,” Artificial Intelligence and Computational Intelligence, Lecture Notes in Computer Science pp. 312–319 (2011).
  22. S. Roth and M. J. Black, “Fields of experts,” Int. J. Comput. Vis.82, 205–229 (2009). [CrossRef]
  23. I. T. Jolliffe, Principle Component Analysis (Springer, 2002).
  24. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process.16, 2080–2095 (2007). [CrossRef] [PubMed]
  25. M. Welling, G. Hinton, and S. Osindero, “Learning sparse topographic representations with products of Student-t distributions,” in Advances in Neural Information Processing Systems (MIT Press, 2003).
  26. G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Comput.14, 1771–1800 (2002). [CrossRef] [PubMed]
  27. J. S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, 2003).
  28. G. H. Golub and C. F. V. Loan, Matrix Computations (The Johns Hopkins University Press, 1996).
  29. The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ .
  30. J. Ke, M. D. Stenner, and M. A. Neifeld, “Minimum reconstruction error in feature-specific imaging,” in Visual Information Processing XIV, Proc. SPIE5817,7–12(2005).
  31. National Optical Astronomy Observatory/Association of Universities for Research in Astronomy/National Science Foundation, http://www.noao.edu/image_gallery/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited