OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22118–22133

Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles

Benoit Fond, Christopher Abram, Andrew L Heyes, Andreas M Kempf, and Frank Beyrau  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22118-22133 (2012)
http://dx.doi.org/10.1364/OE.20.022118


View Full Text Article

Enhanced HTML    Acrobat PDF (2267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an optical diagnostic technique based on seeded thermographic phosphor particles, which allows the simultaneous two-dimensional measurement of gas temperature, velocity and mixture fraction in turbulent flows. The particle Mie scattering signal is recorded to determine the velocity using a conventional PIV approach and the phosphorescence emission is detected to determine the tracer temperature using a two-color method. Theoretical models presented in this work show that the temperature of small tracer particles matches the gas temperature. In addition, by seeding phosphorescent particles to one stream and non-luminescent particles to the other stream, the mixture fraction can also be determined using the phosphorescence emission intensity after conditioning for temperature. The experimental technique is described in detail and a suitable phosphor is identified based on spectroscopic investigations. The joint diagnostics are demonstrated by simultaneously measuring temperature, velocity and mixture fraction in a turbulent jet heated up to 700 K. Correlated single shots are presented with a precision of 2 to 5% and an accuracy of 2%.

© 2012 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(160.2540) Materials : Fluorescent and luminescent materials
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.7250) Remote sensing and sensors : Velocimetry
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 1, 2012
Manuscript Accepted: September 5, 2012
Published: September 12, 2012

Citation
Benoit Fond, Christopher Abram, Andrew L Heyes, Andreas M Kempf, and Frank Beyrau, "Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles," Opt. Express 20, 22118-22133 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Geyer, A. Kempf, A. Dreizler, and J. Janicka, “Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES,” Combust. Flame143(4), 524–548 (2005). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach Publishers, 1990).
  3. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, and R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J.34(3), 442–448 (1996). [CrossRef]
  4. D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt.40(30), 5379–5387 (2001). [CrossRef] [PubMed]
  5. C. F. Kaminski, J. Engtröm, and M. Alden, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst.27, 85–93 (1998).
  6. P. R. Medwell, Q. N. Chan, P. A. Kalt, Z. T. Alwahabi, B. B. Dally, and G. J. Nathan, “Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence,” Appl. Spectrosc.64(2), 173–176 (2010). [CrossRef] [PubMed]
  7. R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced fluorescence thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt.44(31), 6565–6577 (2005). [CrossRef] [PubMed]
  8. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett.22(4), 251–253 (1997). [CrossRef] [PubMed]
  9. M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt.49(1), 37–49 (2010). [CrossRef] [PubMed]
  10. B. K. McMillin, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt.32(36), 7532–7545 (1993). [CrossRef] [PubMed]
  11. W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt.40(6), 748–756 (2001). [CrossRef] [PubMed]
  12. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B-Lasers78(5), 519–533 (2004). [CrossRef]
  13. S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express15(23), 15444–15456 (2007). [CrossRef] [PubMed]
  14. M. Yu, G. Särner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 4 (2010). [CrossRef]
  15. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Oxygen quenching of phosphorescence from thermographic phosphors,” Meas. Sci. Technol.14(5), N17–N20 (2003). [CrossRef]
  16. J. Brübach, A. Dreizler, and J. Janicka, “Gas compositional and pressure effects on thermographic phosphor thermometry,” Meas. Sci. Technol.18(3), 764–770 (2007). [CrossRef]
  17. S. Allison and G. Gillies, “Remote thermometry with thermographic phosphors: Instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2649 (1997). [CrossRef]
  18. M. Aldén, A. Omrane, M. Richter, and G. Särner, “Thermographic phosphors for thermometry: A survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011). [CrossRef]
  19. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
  20. J. P. Feist, A. L. Heyes, and S. Seefeldt, “Thermographic phosphor thermometry for film cooling studies in gas turbine combustors,” Proc. Instn. Mech. Engrs Part A: J. Power and Energy217(2), 193–200 (2003). [CrossRef]
  21. J. Brübach, M. Hage, J. Janicka, and A. Dreizler, “Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor,” Proc. Combust. Inst.32(1), 855–861 (2009). [CrossRef]
  22. A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst.29(2), 2653–2659 (2002). [CrossRef]
  23. J. Brübach, T. Kissel, and A. Dreizler, “Phosphor thermometry at an optically accessible internal combustion engine,” in Laser Applications to Chemical, Security and Environmental Analysis, (Optical Society of America, 2010), paper LWA5.
  24. A. Omrane, G. Särner, and M. Aldén, “Two-dimensional temperature imaging of single droplets and sprays using thermographic phosphors,” Appl. Phys. B-Lasers79, 431–434 (2004). [CrossRef]
  25. A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004). [CrossRef] [PubMed]
  26. J. P. Feist and A. L. Heyes, “The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications,” Meas. Sci. Technol.11(7), 942–947 (2000). [CrossRef]
  27. L. P. Goss, A. A. Smith, and M. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989). [CrossRef]
  28. A. Heyes, S. Seefeldt, and J. Feist, “Two-color phosphor thermometry for surface temperature measurement,” Opt. Laser Technol.38(4-6), 257–265 (2006). [CrossRef]
  29. J. Brübach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B-Lasers83(4), 499–502 (2006). [CrossRef]
  30. G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008). [CrossRef] [PubMed]
  31. B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst.33(1), 939–946 (2011). [CrossRef]
  32. R. Hasegawa, I. Sakata, H. Yanagihara, G. Särner, M. Richter, M. Aldén, and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE Paper, 2007–01–1883, 1797–1803 (2007).
  33. A. Omrane, P. Petersson, M. Aldén, and M. Linne, “Simultaneous two-dimensional flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B-Lasers92, 99–102 (2008). [CrossRef]
  34. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B-Lasers O.106(2), 435–444 (2012). [CrossRef]
  35. D. Ravichandran, R. Roy, W. B. White, and S. Erdei, “Synthesis and characterization of sol-gel derived hexa-aluminate phosphors,” J. Mater. Res.12(03), 819–824 (1997). [CrossRef]
  36. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Science Publications, 1989), 2nd ed.
  37. W. Yen, S. Shionoya, and H. M. Yamamoto, Phosphor Handbook, 2nd ed. (CRC Press, 2006).
  38. Y. H. Wang and Z. H. Zhang, “Luminescence thermal degradation mechanism in BaMgAl10 O17:Eu2+ phosphor,” Electrochem. Solid St.8(11), H97–H99 (2005). [CrossRef]
  39. M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, 2nd ed. (Springer, 2007).
  40. F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, 2nd ed. (Academic Press, 1981).
  41. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997). [CrossRef]
  42. F. Picano, F. Battista, G. Troiani, and C. M. Casciola, “Dynamics of PIV seeding particles in turbulent premixed flames,” Exp. Fluids50(1), 75–88 (2011). [CrossRef]
  43. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3 Al5O12, and LaF3 in the range 77°K–300°K,” J. Appl. Phys.38(4), 1603 (1967). [CrossRef]
  44. N. Konopliv and E. M. Sparrow, “Transient heat conduction in non-homogeneous spherical systems,” Heat Mass Transfer3, 197–210 (1970).
  45. M. Glass and I. Kennedy, “An improved seeding method for high temperature laser doppler velocimetry,” Combust. Flame29, 333–335 (1977). [CrossRef]
  46. J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B-Lasers96(2-3), 237–240 (2009). [CrossRef]
  47. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express14(22), 10171–10180 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited