OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22134–22142

High efficiency laser action of 1% at. Yb3+:Sc2O3 ceramic

Angela Pirri, Guido Toci, Martin Nikl, and Matteo Vannini  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22134-22142 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the spectroscopic characteristics and the laser performances of a low-doped 1% at. Yb:Sc2O3 ceramic sample. Under end- pumping at 933 nm and 968 nm in quasi-CW mode, at 1040.5 nm the laser delivers a maximum output power of 4.3 W and 1.77 W, respectively with a corresponding slope efficiency of 74% and 80%, which are, to the best of our knowledge, the highest value reported in literature for ceramics. We explored the tuning range of the sample, which spans from 1005 nm to 1050.5 nm, and finally we characterized the low losses tunable cavity at 1032 nm.

© 2012 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 9, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 7, 2012
Published: September 12, 2012

Angela Pirri, Guido Toci, Martin Nikl, and Matteo Vannini, "High efficiency laser action of 1% at. Yb3+:Sc2O3 ceramic," Opt. Express 20, 22134-22142 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals,” Appl. Phys. B 106(1), 73–79 (2012). [CrossRef]
  2. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 16116 (2005). [CrossRef]
  3. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007). [CrossRef] [PubMed]
  4. J. Lu, K. Takaichi, T. Uematsu, A. Shirarkawa, M. Musha, K. Ueda, H. Yagi, T. Yanagatani, and A. A. Kaminskii, “Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81(23), 4324–4326 (2002). [CrossRef]
  5. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12(14), 3125–3130 (2004). [CrossRef] [PubMed]
  6. J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, “Efficient room temperature continuous-wave operation of an Yb3+:Lu2O3 crystal laser at 1041.6 and 1094.6 nm,” Opt. Express 12(14), 3125–3256 (2004). [PubMed]
  7. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14(26), 12832–12838 (2006). [CrossRef] [PubMed]
  8. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characterization of highly transparent C-modification Lu2O3 nanocristalline ceramics: room temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett. 3(8), 375–379 (2006). [CrossRef]
  9. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008). [CrossRef]
  10. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett. 36(4), 576–578 (2011). [CrossRef] [PubMed]
  11. A. Pirri, G. Toci, and M. Vannini, “First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics,” Opt. Lett. 36(21), 4284–4286 (2011). [CrossRef] [PubMed]
  12. V. Lupei, A. Lupei, and A. Ikesue, “Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials,” Appl. Phys. Lett. 86(11), 111118 (2005). [CrossRef]
  13. K. Takaichi, H. Yagi, P. Becker, A. Shirakawa, K. Ueda, L. Bohaty, T. Yanagitani, and A. A. Kaminskii, “New data on investigation of novel laser ceramic on the base of cubic scandium sesquioxides: two-band tunable CW generation of Yb:Sc2O3 with laser-diode pumping and dispersion of refractive index in the visible and near-IR of undoped Sc2O3,” Laser Phys. Lett. 4(7), 507–510 (2007). [CrossRef]
  14. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239(1), 879–883 (2002). [CrossRef]
  15. A. Novoselov, J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda, “Micro-pulling-down: a viable approach to the crystal growth of refractory rare-earth sesquioxides,” Inorg. Mater. 43(7), 729–734 (2007). [CrossRef]
  16. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007). [CrossRef] [PubMed]
  17. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009). [CrossRef] [PubMed]
  18. K. Takaichi, H. Yagi, J. Lu, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Yb3+ doped Y3Al5O12 ceramics a new solid-state laser material,” Phys. Status Solidi, A Appl. Res. 200(1), R5–R7 (2003). [CrossRef]
  19. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995). [CrossRef]
  20. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008). [CrossRef]
  21. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005). [CrossRef]
  22. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19(1), 67–71 (2002). [CrossRef]
  23. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003). [CrossRef]
  24. M. Springis, A. Pujats, and J. Valbis, “Polarization of luminescence of colour centres in YAG crystals,” J. Phys. Condens. Matter 3(28), 5457–5461 (1991). [CrossRef]
  25. H. Yin, P. Deng, and F. Gan, “Defects in YAG:Yb crystals,” J. Appl. Phys. 83(7), 3825–3829 (1998). [CrossRef]
  26. P. Yang, P. Deng, J. Xu, and Z. Yin, “Growth of high-quality single crystal of 30% at. Yb:YAG and its laser performance,” J. Cryst. Growth 216(1–4), 348–351 (2000). [CrossRef]
  27. J. Legendziewicz and J. Sokolnicki, “Spectroscopy and structural characteristic of Yb3+ and Nd3+ ions doped nanostructured Lu2O3 and sol–gel derived silica host materials,” J. Alloy. Comp. 451(1-2), 600–605 (2008). [CrossRef]
  28. L. van Pieterson, M. Heeroma, E. De Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin. 91(3–4), 177–193 (2000). [CrossRef]
  29. M. Nikl, A. Yoshikawa, and T. Fukuda, “Charge transfer luminescence in Yb3+-containing compounds,” Opt. Mater. 26(4), 545–549 (2004). [CrossRef]
  30. V. V. Mürk, A. I. Kuznetsov, and B. R. Namozov, “Kinetics of intrinsic luminescence and energy transfer in third group metal oxides,” Phys. Status Solidi A 63(2), K131–K135 (1981). [CrossRef]
  31. W. Hayes, M. J. Kanet, O. Salminents, and A. I. Kuznetsov, “An ODMR study of exciton trapping in Y2O3 and Sc2O3,” Phys. C. Solid State Phys. 17(14), L383–L387 (1984). [CrossRef]
  32. A. Lushchik, M. Kirm, C. Lushchik, I. Martinson, and G. Zimmerer, “Luminescence of free and self-trapped excitons in wide-gap oxides,” J. Lumin. 87–89, 232–234 (2000). [CrossRef]
  33. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers - Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004). [CrossRef]
  34. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009). [CrossRef] [PubMed]
  35. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988). [CrossRef]
  36. M. Eichhorn, “High-power resonantly diode-pumped CW Er3+:YAG laser,” Appl. Phys. B 93(4), 773–778 (2008). [CrossRef]
  37. A. Pirri, G. Toci, D. Alderighi, and M. Vannini, “Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics,” Opt. Express 18(16), 17262–17272 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited