OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22143–22157

Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization

Xiang Lei, Shuai Wang, Hu Yan, Wenjin Liu, Lizhi Dong, Ping Yang, and Bing Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22143-22157 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optimization-based correction method is developed to control simultaneously two deformable mirrors in a wavefront-sensor-less adaptive beam cleanup system, where the wave-front aberrations could not be compensated by a single deformable mirror. Stochastic parallel gradient decent algorithm is chosen as the optimization algorithm. In this control method, different aberrations are assigned to each deformable mirror according to their different correction quality. The method is proved to be effective by numerical simulations as well as experiments. Experimental results showed that the area containing 84% energy of the laser beam in the far-field can reach 3.0 times diffraction limited.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.1000) Holography : Aberration compensation
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Adaptive Optics

Original Manuscript: July 16, 2012
Revised Manuscript: August 24, 2012
Manuscript Accepted: August 31, 2012
Published: September 12, 2012

Xiang Lei, Shuai Wang, Hu Yan, Wenjin Liu, Lizhi Dong, Ping Yang, and Bing Xu, "Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization," Opt. Express 20, 22143-22157 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Koechener, Solid-State Laser Engineering (Springer, 1999), Chap. 4.
  2. K. N. LaFortune, R. L. Hurd, E. M. Johansson, C. B. Dane, S. N. Fochs, and J. M. Brase, “Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser,” Proc. SPIE 5333, 53–61 (2004). [CrossRef]
  3. X. Lei, B. Xu, P. Yang, L. Dong, W. Liu, and H. Yan, “Beam cleanup of a 532-nm pulsed solid-state laser using a bimorph mirror,” Chin. Opt. Lett. 10(2), 021401 (2012).
  4. P. Yang, Y. Ning, X. Lei, B. Xu, X. Li, L. Dong, H. Yan, W. Liu, W. Jiang, L. Liu, C. Wang, X. Liang, and X. Tang, “Enhancement of the beam quality of non-uniform output slab laser amplifier with a 39-actuator rectangular piezoelectric deformable mirror,” Opt. Express 18(7), 7121–7130 (2010). [CrossRef] [PubMed]
  5. T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux, and J.-P. Chambaret, “Adaptive wavefront correction on a 100-TW/10-Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252(4-6), 222–228 (2005). [CrossRef]
  6. S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J. C. Kieffer, “Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the Advanced Laser Light Source,” Opt. Express 16(16), 11987–11994 (2008). [CrossRef] [PubMed]
  7. P. Yang, Y. Liu, M. Ao, S. Hu, and B. Xu, “A wavefront sensor-less adaptive optical system for a solid-state laser,” Opt. Lasers Eng. 46(7), 517–521 (2008). [CrossRef]
  8. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]
  9. W. Zou, X. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011). [CrossRef] [PubMed]
  10. W. Zou and S. A. Burns, “Testing of Lagrange multiplier damped least-square control algorithm for woofer-tweeter adaptive optics,” Appl. Opt. 51(9), 1198–1208 (2012). [CrossRef]
  11. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009). [CrossRef] [PubMed]
  12. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef] [PubMed]
  13. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  14. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006). [CrossRef] [PubMed]
  15. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46(20), 4329–4340 (2007). [CrossRef] [PubMed]
  16. H. Y and X. Li, “The Control Method of Close-Loop Adaptive Optical System with Multi-Wavefront-Correctors,” Chin. J. Lasers 36(Suppl.), 67–72 (2009).
  17. H. Baumhacker, G. Pretzler, K. J. Witte, M. Hegelich, M. Kaluza, S. Karsch, A. Kudryashov, V. Samarkin, and A. Roukossouev, “Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser,” Opt. Lett. 27(17), 1570–1572 (2002). [CrossRef] [PubMed]
  18. J. D. Barchers, “Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations,” J. Opt. Soc. Am. A 19(5), 926–945 (2002). [CrossRef] [PubMed]
  19. J. Sheldakova, A. Kudryashov, V. Samarkin, and V. Zavalova, “Problem of Shack-Hartmann wavefront sensor and Interferometer use while testing strongly distorted laser wavefront,” Proc. SPIE 6872, 68720B(2008). [CrossRef]
  20. C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, and J. Herrmann, “Atmospheric-compensation experiments in strong-scintillation conditions,” Appl. Opt. 34(12), 2081–2088 (1995). [CrossRef] [PubMed]
  21. H. Ma, Z. Liu, X. Xu, X. Wang, Y. Ma, and P. Zhou, “Adaptive generation of a near-diffraction-limited square flattop beam with dual phase only liquid crystal spatial light mudulators,” J. Opt. 13(1), 015707 (2011). [CrossRef]
  22. H. Zhao, H. Ma, P. Zhou, X. Wang, Y. Ma, X. Li, X. Xu, and Y. Zhao, “Muitimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm,” Opt. Commun. 284(2), 613–615 (2011). [CrossRef]
  23. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wavefront phase-distortion correction,” J. Opt. Soc. Am. A 15(10), 2745–2758 (1998). [CrossRef]
  24. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17(8), 1440–1453 (2000). [CrossRef] [PubMed]
  25. P. Piatrou and M. Roggemann, “Beaconless stochastic parallel gradient descent laser beam control: numerical experiments,” Appl. Opt. 46(27), 6831–6842 (2007). [CrossRef] [PubMed]
  26. M. A. Vorontsov and G. W. Carhart, “Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters,” J. Opt. Soc. Am. A 23(10), 2613–2622 (2006). [CrossRef] [PubMed]
  27. T. Weyrauch, M. A. Vorontsov, T. G. Bifano, J. A. Hammer, M. Cohen, and G. Cauwenberghs, “Microscale adaptive optics: wave-front control with a μ-mirror array and a VLSI stochastic gradient descent controller,” Appl. Opt. 40(24), 4243–4253 (2001). [CrossRef] [PubMed]
  28. T. Weyrauch and M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27(9), 751–753 (2002). [CrossRef] [PubMed]
  29. L. Dong, P. Yang, and B. Xu, “Adaptive aberration correction based on ant colony algorithm for solid-state lasers: numerical simulations,” Appl. Phys. B 96(2-3), 527–533 (2009). [CrossRef]
  30. Z. Yang, “Description of wave-front modes in square area and its application in ICF system,” Engineering Master Dissertation (University of Electronic Science and Technology of China, 2008) (in Chinese).
  31. X. Rao, N. Ling, and W. Jiang, “Experimental of measuring influence function of deformable mirror using digital interferometer,” Acta Opt. Sin. 15, 1446–1451 (1995) (in Chinese).
  32. A. E. Siegman, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, M. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1. http://www.opticsinfobase.org/abstract.cfm?URI=DLAI-1998-MQ1 .
  33. X. Li, X. Hao, C. Wang, and W. Jiang, “Relationship between beam quality factor β and wavefront error,” Chin. J. Lasers 32(6), 798–802 (2005) (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited