OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22172–22180

Orders of magnitude enhancement of mode splitting by plasmonic intracavity resonance

Chao-Yi Tai and Wen-Hsiang Yu  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22172-22180 (2012)
http://dx.doi.org/10.1364/OE.20.022172


View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

we report on significant mode splitting in plasmonic resonators induced by intracavity resonance. In contrast to traditional dielectric resonators where only picometer range of splitting was achieved, splitting over several hundred nanometers can be obtained without using ultrahigh quality resonators. We show that by appropriately choosing the coupling length, minute reflection is sufficient to establish intracavity resonance, which effectively lifts the degeneracy of the counterpropagating modes in the resonator. The mode splitting provides two self-referenced channels enabling simultaneous monitoring of the position and the polarizability of nano-scatterers in the resonator.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 17, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 9, 2012
Published: September 12, 2012

Citation
Chao-Yi Tai and Wen-Hsiang Yu, "Orders of magnitude enhancement of mode splitting by plasmonic intracavity resonance," Opt. Express 20, 22172-22180 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996). [CrossRef] [PubMed]
  2. T. Lu, L. Yang, R. V. A. van Loon, A. Polman, and K. J. Vahala, “On-chip green silica upconversion microlaser,” Opt. Lett. 34(4), 482–484 (2009). [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]
  4. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005). [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  7. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low Q limit,” Appl. Phys. B 90(3-4), 561–567 (2008). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  9. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  10. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005). [CrossRef] [PubMed]
  11. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18(6), 6191–6204 (2010). [CrossRef] [PubMed]
  12. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17(22), 20134–20139 (2009). [CrossRef] [PubMed]
  13. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007). [CrossRef]
  14. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D Appl. Phys. 43(5), 055103 (2010). [CrossRef]
  15. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27(19), 1669–1671 (2002). [CrossRef] [PubMed]
  16. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051–1057 (2000). [CrossRef]
  17. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011). [CrossRef] [PubMed]
  18. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010). [CrossRef]
  19. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  20. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  21. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999). [CrossRef]
  22. G.-X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antenn. Propag. 48(5), 637–646 (2000). [CrossRef]
  23. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27(5), 334–339 (2000). [CrossRef]
  24. J. Avelin, R. Sharma, I. Hänninen, and A. H. Sihvola, “Polarizability analysis of cubical and square-shaped dielectric scatterers,” IEEE Trans. Antenn. Propag. 49(3), 451–457 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited