OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22188–22194

Understanding the fiber tip thermal runaway present in 3µm fluoride glass fiber lasers

Nicolas Caron, Martin Bernier, Dominic Faucher, and Réal Vallée  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22188-22194 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When the tip of a fluoride glass fiber is exposed to ambient air, water vapor reacts with the glass constituents, increasing the OH contaminants at the surface. These OH impurities then diffuse inside the glass according to Fick’s laws. Laser radiation at around 3µm is strongly absorbed by the OH contaminants, causing local heating of the fiber tip resulting in an increase of the diffusion process which ultimately leads to fiber tip destruction. We accurately model this phenomenon by combining the diffusion theory with a basic thermal equation. Experimental measurements are in agreement with the model predictions for a good range of operating conditions.

© 2012 OSA

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.6810) Lasers and laser optics : Thermal effects
(240.6648) Optics at surfaces : Surface dynamics

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 17, 2012
Manuscript Accepted: August 23, 2012
Published: September 13, 2012

Nicolas Caron, Martin Bernier, Dominic Faucher, and Réal Vallée, "Understanding the fiber tip thermal runaway present in 3µm fluoride glass fiber lasers," Opt. Express 20, 22188-22194 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Moulson and J. P. Roberts, “Water in silica glass,” Trans. Faraday Soc. 57, 1208–1216 (1961). [CrossRef]
  2. P. L. Studt, J. F. Shackelford, and R. M. Fulrath, “Solubility of gases in glass-a monatomic model,” J. Appl. Phys. 41(7), 2777–2780 (1970). [CrossRef]
  3. J. F. Shackelford, P. L. Studt, and R. M. Fulrath, “Solubility of gases in glass. II. He, Ne, and H2 in fused silica,” J. Appl. Phys. 43(4), 1619–1626 (1972). [CrossRef]
  4. R. H. Doremus, D. Murphy, N. P. Bansal, W. A. Lanford, and C. Burman, “Reaction of zirconium fluoride glass with water: kinetics of dissolution,” J. Mater. Sci. 20(12), 4445–4453 (1985). [CrossRef]
  5. R. H. Doremus, N. P. Bansal, T. Bradner, and D. Murphy, “Zirconium fluoride glass: surface crystals formed by reaction with water,” J. Mater. Sci. Lett. 3(6), 484–488 (1984). [CrossRef]
  6. C. J. Simmons, H. Sutter, J. H. Simmons, and D. C. Tran, “Aqueous corrosion studies of a fluorozirconate glass,” Mater. Res. Bull. 17(9), 1203–1210 (1982). [CrossRef]
  7. C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986). [CrossRef]
  8. B. Hueber, G. H. Frischat, A. Maldener, O. Dersch, and F. Rauch, “Initial corrosion stages of a heavy metal fluoride glass in water,” J. Non-Cryst. Solids 256–257, 130–134 (1999). [CrossRef]
  9. A. P. Rizzato, C. V. Santilli, S. H. Pulcinelli, Y. Messaddeq, A. F. Craievich, and P. Hammer, “Study on the initial stages of water corrosion of fluorozirconate glasses,” J. Non-Cryst. Solids 348, 38–43 (2004). [CrossRef]
  10. M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988). [CrossRef]
  11. D. Tregoat, M. J. Liepmann, G. Fonteneau, J. Lucas, and J. D. Mackenzie, “Comparative corrosion mechanism of ThF4 and ZrF4 based fluoride glasses in aqueous solutions,” J. Non-Cryst. Solids 83(3), 282–296 (1986). [CrossRef]
  12. C. J. Simmons, “Chemical durability of fluoride glasses: II, reaction of barium-thorium-based glasses with water,” J. Am. Ceram. Soc. 70(4), 295–300 (1987). [CrossRef]
  13. G. H. Frischat, B. Hueber, and B. Ramdohr, “Chemical stability of ZrF4- and AlF3- based heavy metal fluoride glasses in water,” J. Non-Cryst. Solids 284(1-3), 105–109 (2001). [CrossRef]
  14. C. J. Simmons, “Chemical durability of fluoride glasses: III, the effect of solution pH,” J. Am. Ceram. Soc. 70(9), 654–661 (1987). [CrossRef]
  15. M. Robinson and M. G. Drexhage, “A phenomenological comparison of some heavy metal fluoride glasses in water environments,” Mater. Res. Bull. 18(9), 1101–1112 (1983). [CrossRef]
  16. D. Trégoat, G. Fonteneau, C. T. Moynihan, and J. Lucas, “Surface -OH profile from reaction of a heavy-metal fluoride glass with atmospheric water,” J. Am. Ceram. Soc. 68, 171–173 (1985).
  17. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012). [CrossRef]
  18. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 μ all fiber laser,” Opt. Express 17(19), 16941–16946 (2009). [CrossRef] [PubMed]
  19. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011). [CrossRef] [PubMed]
  20. D. Faucher, M. Bernier, N. Caron, and R. Vallée, “Erbium-doped all-fiber laser at 2.94 microm,” Opt. Lett. 34(21), 3313–3315 (2009). [CrossRef] [PubMed]
  21. J. P. Bromberg, Physical Chemistry, 2nd ed. (Allyn and Bacon, 1984), p. 949.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited