OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22233–22244

Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides

Yin Huang, Changjun Min, and Georgios Veronis  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22233-22244 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce compact wavelength-scale slit-based structures for coupling free space light into metal-dielectric-metal (MDM) subwave-length plasmonic waveguides. We first show that for a single slit structure the coupling efficiency is limited by a trade-off between the light power coupled into the slit, and the transmission of the slit-MDM waveguide junction. We next consider a two-section slit structure, and show that for such a structure the upper slit section enhances the coupling of the incident light into the lower slit section. The optimized two-section slit structure results in ∼ 2.3 times enhancement of the coupling into the MDM plasmonic waveguide compared to the optimized single-slit structure. We finally consider a symmetric double-slit structure, and show that for such a structure the surface plasmons excited at the metal-air interfaces are partially coupled into the slits. Thus, the coupling of the incident light into the slits is greatly enhanced, and the optimized double-slit structure results in ∼ 3.3 times coupling enhancement compared to the optimized single-slit structure. In all cases the coupler response is broadband.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: July 20, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 7, 2012
Published: September 13, 2012

Yin Huang, Changjun Min, and Georgios Veronis, "Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides," Opt. Express 20, 22233-22244 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002). [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  4. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  5. G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  6. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  7. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008). [CrossRef] [PubMed]
  8. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  9. D. M. Pozar, Microwave Engineering (Wiley, New York, 1998).
  10. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  11. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef] [PubMed]
  12. E. Feigenbaum and M. Orenstein, “Modeling of complementary void plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007). [CrossRef]
  13. R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009). [CrossRef]
  14. R. X. Yang, R. A. Wahsheh, Z. L. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35, 649–651 (2010). [CrossRef] [PubMed]
  15. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009). [CrossRef]
  16. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010). [CrossRef] [PubMed]
  17. M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, “Efficient optical coupling into metal-insulator-metal plasmon modes with subwavelength diffraction gratings,” Appl. Phys. Lett. 92, 113109 (2008). [CrossRef]
  18. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6, 1928–1932 (2006). [CrossRef] [PubMed]
  19. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (World Scientific, 2009).
  21. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nature Photonics 3, 283–286 (2009). [CrossRef]
  22. K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal-insulator-metal resonators,” Nano Lett. 9, 2579–2583 (2009). [CrossRef] [PubMed]
  23. S. D. Wu and E. N. Glytsis, “Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method,” J. Opt. Soc. Am. A 19, 2018–2029 (2002). [CrossRef]
  24. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290 (2004). [CrossRef] [PubMed]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  26. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).
  27. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  28. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Topics Quantum Electron. 14, 1462–1472 (2008). [CrossRef]
  29. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994).
  30. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009). [CrossRef] [PubMed]
  31. K. Krishnakumar, “Micro-genetic algorithms for stationary and non-stationary function optimization,” Proc. SPIE 1196, 289–296 (1989).
  32. C. Min, L. Yang, and G. Veronis, “Microcavity enhanced optical absorption in subwavelength slits,” Opt. Express 19, 26850–26858 (2011). [CrossRef]
  33. L. Verslegers, Z. Yu, P. B. Catrysse, and S. Fan, “Temporal coupled-mode theory for resonant apertures,” J. Opt. Soc. Am. B 27, 1947–1956 (2010). [CrossRef]
  34. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (Wiley, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited