OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 20 — Sep. 24, 2012
  • pp: 22314–22326

Electro-optofluidics: achieving dynamic control on-chip

Mohammad Soltani, James T. Inman, Michal Lipson, and Michelle D. Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22314-22326 (2012)
http://dx.doi.org/10.1364/OE.20.022314


View Full Text Article

Enhanced HTML    Acrobat PDF (1515 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 15, 2012
Published: September 14, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Mohammad Soltani, James T. Inman, Michal Lipson, and Michelle D. Wang, "Electro-optofluidics: achieving dynamic control on-chip," Opt. Express 20, 22314-22326 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-20-22314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. X. D. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011). [CrossRef] [PubMed]
  4. H. Schmidt and A. R. Hawkins, “Photonics integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011). [CrossRef]
  5. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  6. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  7. X. Serey, S. Mandal, Y. F. Chen, and D. Erickson, “DNA transport and delivery in thermal gradients near optofluidic resonators,” Phys. Rev. Lett. 108(4), 048102 (2012). [CrossRef] [PubMed]
  8. S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010). [CrossRef] [PubMed]
  9. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid Nanofluid 4(1-2), 97–105 (2008). [CrossRef]
  10. S. K. Y. Tang, B. T. Mayers, D. V. Vezenov, and G. M. Whitesides, “Optical waveguiding using thermal gradients across homogenous liquids in microfluidic channel,” Appl. Phys. Lett. 88(6), 061112 (2006). [CrossRef]
  11. A. J. Chung and D. Erickson, “Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express 19(9), 8602–8609 (2011). [CrossRef] [PubMed]
  12. L. Diehl, B. G. Lee, P. Behroozi, M. Loncar, M. A. Belkin, F. Capasso, T. Aellen, D. Hofstetter, M. Beck, and J. Faist, “Microfluidic tuning of distributed feedback quantum cascade lasers,” Opt. Express 14(24), 11660–11667 (2006). [CrossRef] [PubMed]
  13. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008). [CrossRef] [PubMed]
  14. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006). [CrossRef] [PubMed]
  15. R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express 17(2), 1116–1125 (2009). [CrossRef] [PubMed]
  16. L. J. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007). [CrossRef] [PubMed]
  17. C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  18. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007). [CrossRef] [PubMed]
  19. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  20. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010). [CrossRef] [PubMed]
  21. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  22. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010). [CrossRef] [PubMed]
  23. R. R. Brau, P. B. Tarsa, J. M. Ferrer, P. Lee, and M. J. Lang, “Interlaced optical force-fluorescence measurements for single molecule biophysics,” Biophys. J. 91(3), 1069–1077 (2006). [CrossRef] [PubMed]
  24. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  25. A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localization, registration and distance measurements,” Nature 466(7306), 647–651 (2010). [CrossRef] [PubMed]
  26. B. Sun, D. S. Johnson, G. Patel, B. Y. Smith, M. Pandey, S. S. Patel, and M. D. Wang, “ATP-induced helicase slippage reveals highly coordinated subunits,” Nature 478(7367), 132–135 (2011). [CrossRef] [PubMed]
  27. A. L. Forget and S. C. Kowalczykowski, “Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search,” Nature 482(7385), 423–427 (2012). [CrossRef] [PubMed]
  28. A. L. Robinson, “New ways to make microcircuits smaller,” Science 208(4447), 1019–1022 (1980). [CrossRef] [PubMed]
  29. J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media (Noordhoff International Publishing, Leiden, 1973).
  30. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (73 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited